K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

Đặt ab = m , cd = n 

Ta có 10m + n chia hết cho mn

=>n chia hết cho m và 10m chia hết cho n

S đó tìm hết 

30 tháng 5 2018

Bài giải

Ta có :

\(\overline{abcd}⋮\overline{ab.\overline{cd}}\)                      (1)

\(\Rightarrow100.\overline{ab}+\overline{cd}⋮\overline{ab}.\overline{cd}\)  (2)                       

\(\Rightarrow\overline{cd}⋮\overline{ab}\)

Đặt \(\overline{cd}=k.ab\)với \(k\inℕ,1\le k\le9\) (3)

 Thay vào (2) :

\(100.\overline{ab}+k.\overline{ab}⋮k.\overline{ab}.\overline{ab}\)

\(\Rightarrow100+k⋮k.\overline{ab}\) (4)

\(\Rightarrow100⋮k\)                 (5)

Từ (3) và (5) :

\(\Rightarrow k\in\left\{1;2;4;5\right\}\)

Với k=1 ,thay vào (4) \(⋮101⋮\overline{ab}\) (loại)

Với k=2 thay vào (4) :102 \(⋮2.\overline{ab}\Rightarrow51⋮\overline{ab}\).Khi đó:

\(\overline{ab}=17\) và \(\overline{cd}=34\) ,hoặc \(\overline{ab}=51\)và \(\overline{cd}=102\)(loại)

Với k=4 thay vào (4) :104 \(⋮\)4.ab  hoặc ab = 26 và cd= 104 (loại)

Với k=5 thay vào (4) :105 \(⋮\)5 .ab \(\Rightarrow\)21\(⋮\)ab .Khi đó :

                                 \(\overline{ab}=21\)và \(\overline{cd}=105\)(loại)

KL : Có hai đáp số : 1734 và 1352

8 tháng 12 2016

Theo đề bài, ta có:

10a+b- (10b+a)=72\(\Leftrightarrow\)9a-9b=72 \(\Leftrightarrow\) a-b = 8 =>a = 8+b

Mà a,b là số tự nhiên <9 và >1 => 8+b <9

=> b = 1, a = 9

Vậy số tự nhiên \(\overline{ab}\)=91

4 tháng 1 2020

Theo bài ra, ta có: \(\overline{ab}\) - \(\overline{ba}\)

= 10a + b - (10b + a)

= 10a + b - 10b - a

= 9a - 9b = 9(a - b) = 72

\(\Rightarrow\) a - b = 72 : 9 = 8

\(\Rightarrow\) a = 8 + b

Mà a \(\le\) 9 \(\Rightarrow\) 8 + b \(\le\) 9 \(\Rightarrow\) b = 1; a = 9

Vậy \(\overline{ab}\) = 91

18 tháng 5 2017

Ta có : \(\overline{ab}-\overline{ba}=72\Rightarrow\left(10a+b\right)-\left(10b+a\right)=72\)

\(\Rightarrow10a+b-10b-a=72\)

\(\Rightarrow10a-10b+b-a=72\)

\(\Rightarrow10\left(a-b\right)-a+b=72\)

\(\Rightarrow10\left(a-b\right)-\left(a-b\right)=72\)

\(\Rightarrow\left(10-1\right)\left(a-b\right)=72\Rightarrow9\left(a-b\right)=72\)

\(\Rightarrow a-b=72\div9\Rightarrow a-b=8\)

Vì : a,b là chữ số \(\Rightarrow0< a,b\le9\)

Mà : a - b = 8 \(\Rightarrow\left\{{}\begin{matrix}a=9\\b=1\end{matrix}\right.\)

Vậy số tự nhiên \(\overline{ab}\) cần tìm là 91

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

9 tháng 9 2019

Câu hỏi của Nguyễn Thị Linh Chi - Toán lớp 6 - Học toán với OnlineMath

5 tháng 7 2018
https://i.imgur.com/Fyq68El.png
1 tháng 7 2019

Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\)  (dấu bằng xảy ra khi và chỉ khi x=y)

Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y

Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010

Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y

Nên: \(x=y=987\)

Max x+y=\(\sqrt{4\cdot987^2}=1974\)

Không viết đúng không

:v

1 tháng 7 2019

Mình xem đáp án là 1328 với lại mình gõ nhầm;

abcdef là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .