K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2023

\(n^2+4n+2013=\left(n^2+4n+4\right)+2009=k^2\)

\(\Leftrightarrow\left(n+2\right)^2+2009=k^2\)

\(\Rightarrow\left(k-n-2\right)\left(k+n+2\right)=2009\)

\(\Rightarrow k-n-2\) và \(k+n+2\) là ước của 2009

Ta có các TH

\(\left\{{}\begin{matrix}k-n-2=-1\\k+n+2=-2009\end{matrix}\right.\) 

Hoặc

\(\left\{{}\begin{matrix}k-n-2=-2009\\k+n+2=-1\end{matrix}\right.\)

Hoặc

\(\left\{{}\begin{matrix}k-n-2=1\\k+n+2=2009\end{matrix}\right.\)

Hoặc

\(\left\{{}\begin{matrix}k-n-2=2009\\k+n+2=1\end{matrix}\right.\)

Giải các hệ trên tìm n

 

11 tháng 11 2017

Đặt n^2+4n+2013 =a^2 ( a thuộc N*) => n^2+4n+4+2009=a^2 => (n+2)^2 +2009=a^2 => 2009= a^2-(n+2)^2 = (a-n-2)(a+n+2) mà a, n thuộc N, N* => a-n-2<a+n+2

(a-n-2)(a+n+2)=1.2009=7.287= 41.49

Bạn tự giải các trường hợp trên tìm được n=1002;138;2

12 tháng 11 2017

(+) a-n-2=1;a+n+2=2009

=> a+n+2-a+n+2=2009-1

=> 2n+4= 2008 => n= 1002 

Giải tương tự các trường hợp trên 

10 tháng 11 2017

\(n^2+4n+2013=a^2\)

\(\Leftrightarrow a^2-\left(n+2\right)^2=2009\)

\(\Leftrightarrow\left(a-n-2\right)\left(a+n+2\right)=41.7.7\)

Tới đây thì đơn giản rồi nhé

3 tháng 8 2023

`5.25.2.41.8`

`= 5.50.41.8`

`= 5.400.41`

`= 2000.41`

`= 82000`

3 tháng 8 2023

Đặt \(n^2+4n+2013=p^2\left(p\in Z\right)\)

\(\Rightarrow n^2+4n+4+2009=p^2\)

\(\Rightarrow\left(n+2\right)^2+2009=p^2\)

\(\Rightarrow p^2-\left(n+2\right)^2=2009\)

\(\Rightarrow\left(p+n+2\right)\left(p-n-2\right)=2009\)

mà \(p+n+2>p-n-2\left(n\in N\right)\) và 2009 là số nguyên tố

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}p+n+2=2009\\p-n-2=1\end{matrix}\right.\\\left\{{}\begin{matrix}p+n+2=-2009\\p-n-2=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=1002\\p=1005\end{matrix}\right.\)

Vậy \(n=1002\) thỏa đề bài

 

15 tháng 10 2017

a) \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

Mà \(a+b+c\ne0\) nên \(a^2+b^2+c^2-ab-ac-bc=0\)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\Rightarrow a=b=c\) thay vào N ta được :

\(N=\frac{3.a^{2016}}{\left(3a\right)^{2016}}=\frac{3}{3^{2016}}=\frac{1}{3^{2015}}\)

b) Do \(n^2+4n+2013\) là số CP nên \(n^2+4n+2013=a^2\) (a thuộc Z)

\(\Leftrightarrow\left(n^2+4n+4\right)-a^2=-2009\)

\(\Leftrightarrow\left(n+2\right)^2-a^2=-2009\Leftrightarrow\left(n-a+2\right)\left(n+a+2\right)=-2009\)

Đến đây xét ước -2009 ra là đc

27 tháng 3 2018

a. 1/3^2015 

b. n = 2 

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3

13 tháng 7 2018

1/ Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

2/

Đặt \(n^2+4n+2013=m^2\left(m\in N\right)\)

\(\Rightarrow\left(n^2+4n+4\right)+2009=m^2\)

\(\Rightarrow m^2-\left(n+2\right)^2=2009\)

\(\Rightarrow\left(m+n+2\right)\left(m-n-2\right)=2009\)

Vì \(m,n\in N\Rightarrow m+n+2;m-n-2\in N\Rightarrow m+n+2>m-n-2\)

\(\Rightarrow\hept{\begin{cases}m+n+2=2009\\m-n-2=1\end{cases}\Rightarrow\hept{\begin{cases}m+n=2007\\m-n=3\end{cases}}\Rightarrow\hept{\begin{cases}m=1005\\n=1002\end{cases}}}\)

Vậy n = 1002

13 tháng 7 2018

các bạn thay n2 ở câu 1 = n3 cho mk nhé