K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số tự nhiên cần tìm là : a,(a \(\in\)N*)

Ta có:  a : 5 dư 4

       =>a - 4 \(⋮\)5

       => a - 4 + 30 \(⋮\)5

       => a + 26 \(⋮\)5      (1)

Mặt \(\ne\)a : 8 dư 6

       => a - 6  chia hết 8

       => a - 6 + 32 chia hết 8

       => a + 26 chia hết 8   (2)

Từ (1),(2)  => a + 26 \(\in\)BC(5,8)

  mà BCNN(5,8)=40  vì (5,8 = 1)

=> a + 26 = 40k / k \(\in\)N

Do a là nhỏ nhất nên :

        a + 26 = 40

=> a            = 40 - 26

=> a            = 14

Vậy số cần tìm là 14.

29 tháng 2 2020

Là số 14 bạn nhé 

 #hok tốt# 

Gọi số tự nhiên cần tìm là : a, (a\(\in\)N*)
Ta có : a : 7 dư 5

=> a - 5 chia hết 7

=> a - 5 + 49 chia hết 7

=> a + 44 chia hết 7'    (1)

Mặt \(\ne\)a : 8 dư 4

=> a - 4 chia hết 8

=> a - 4 + 48 chia hết 8

=> a + 44 chia hết 8     (2)

Từ (1),(2) => a + 44 \(\in\) BC (7,8)

mà BCNN(7,8)=56 vì (7,8 = 1 )

=> a + 44 \(\in\){56k / k \(\in\)N}

Mà a là nhỏ nhất nên :

=> a  + 44 = 56

=> a          = 56 - 44

=> a           =  12

Vậy số ta cần tìm là : 12

23 tháng 6 2016

Phải chi 11 dư 6 mới làm đc nhé

Vì a chia 5 dư 3 nên : a + 2 chia hết cho 5 => a + 2 + 15 chia hết cho 5 => a + 17 chia hết cho 5

Vì a chia 7 dư 4 nên : a + 3 chia hết cho 7 => a + 3 + 14 chia hết cho 7 => a + 17 chia hết cho 7

Vì a chia 11 dư 5 nên : a + 6 chia hết cho 11 => a + 6 + 11 chia hết cho 11 => a + 17 chia hết cho 11

Đến đây thì dễ rồi

1 tháng 11 2016

hfhhfh

 

11 tháng 11 2018

Gọi số phải tìm là a(a\(\ne\)0,a\(\inℕ\))

Ta có:a=5k1+2

          a=8k2+6

         a=12k3+8

Suy ra 2a=10k1+4

           2a=16k2+12

           2a=24k3+16

Ta có 2a-4sẽ \(⋮\)5;8;12

Mà a là nhỏ nhất nên 2a-4 là BCNN(5,8,12)=120

Suy ra 2a-4=120

           2a=124

           a=62

Vậy số phải tìm là 62

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 (p  N)

Tương tự:  A = 31q + 28 (q  N)

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p - q) cũng là số lẻ => p - q ≥≥ 1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

                                         => 2q = 29(p - q) - 23 nhỏ nhất

                                         => p - q nhỏ nhất

Do đó p - q = 1 => 2q = 29 - 23 = 6

                         => q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 93 + 28 = 121

Cách 2

Gọi số tự nhiên nhỏ nhất cần tìm là a

Do a chia 29 dư 5; chia 31 dư 28

=> a = 29.m + 5 = 31.n + 28 (m;n∈N)(m;n∈N)

=> 29.m = 31.n + 23

=> 29.m = 29.n + 2.n + 23

=> 29.m - 29.n = 2.n + 23

=> 29.(m - n) = 2.n + 23

⇒2.n+23⋮29⇒2.n+23⋮29

Để a nhỏ nhất thì n nhỏ nhất => 2.n + 23 nhỏ nhất

Mà 2.n + 23 là số lẻ => 2.n + 23 = 29

=> 2.n = 29 - 23

=> 2.n = 6

=> n = 6 : 2 = 3

=> a = 31.3 + 28 = 121

Vậy số nhỏ nhất cần tìm là 121

11 tháng 1 2018

Gọi x là số phải tìm thì x + 2 chia hết cho 3, 4, 5, 6 nên x + 2 là bội chung của 3, 4, 5, 6.

BCNN (3, 4, 5, 6) = 60 nên x + 2 = 60n.

Do đó x = 60n - 2 (n = 1, 2, 3, ...).

Ngoài ra x phải là số nhỏ nhất có tính chất trên và x phải chia hết cho 13.

Lần lượt cho n bằng 1, 2, 3, ... ta thấy đến n = 10 thì x = 598 chia hết cho 13.

Vậy số tự nhiên đó là 598

11 tháng 1 2018

\(\text{Gọi x là số phải tìm thì x + 2 chia hết cho 3, 4, 5, 6 nên x + 2 là bội chung của 3, 4, 5, 6.}\)

BCNN (3, 4, 5, 6) = 60 nên x + 2 = 60n.

Do đó x = 60n - 2 (n = 1, 2, 3, ...).

Ngoài ra x phải là số nhỏ nhất có tính chất trên và x phải chia hết cho 13.

Lần lượt cho n bằng 1, 2, 3, ... ta thấy đến n = 10 thì x = 598 chia hết cho 13.

Vậy số tự nhiên đó là 598