K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2016

Gọi số cần tìm là a (a thuộc Z)

Ta có: số đó chia 13 dư 5 và chia 17 dư 9

=>a=13m+5                   ( m thuộc Z)

    a=17n+9                    ( n thuộc Z)

=>a+8=13m+5+8=13+13=13(m+1)

    a+8=17n+9+8=17n+17=17(n+1)

=> a+8 chia hết cho cả 13 và 17

Mà a nhỏ nhất=> a+8 nhỏ nhất=> a+8=BCNN(13,17)=221

=>a+8=221

=>a=221-8=213

Vậy số cần tìm là 213

15 tháng 1 2016

Gọi số tự nhiên cần tìm là a. Theo bài ra ta có: a- 5 chia hết cho 13, a-9 chia hết cho 17

suy ra: a-5+13 chia hết cho 13, a-9+17 chia hết cho 17. Suy ra: a+8 chia hết cho 13, a+8 chia hết cho 17.

Suy ra: a+8 thuộc BC(13,17), a+8 thuộc{ 0,221,442,...} , mà a thuộc N

Suy ra: a thuộc { 213, 434, ...}, mà a nhỏ nhất nên a= 213

Vậy a= 213

(các từ có thể dùng kí hiệu thì phải dùng kí hiệu nhé)

15 tháng 1 2016

đã bảo là làm cả lời giải vào mà bọn ngu kia

3 tháng 3 2019

Gọi số đó là a

a là số nhỏ nhất

a - 5 chia hết cho 13

a - 9 chia hết cho 17

=> a + 8 chia hết cho 13 và 17 (5 + 8 = 13/ 9 + 8 = 17) và a nhỏ nhất 

=>a + 8 = BCNN(13,17) = 221

=> a = 221 - 8 = 213

2 tháng 1 2017

 Gọi a là số tự nhiên cần tìm. 
a chia 17 dư 5 => a = 17m + 5 
a chia 19 dư 12 => a = 19n + 12 
Do đó: 
a + 216 = 17m + 221 chia hết cho 17. 
a + 216 = 17n + 228 chia hết cho 19 
=> a + 216 chia hết cho 17 và chia hết cho 19. 
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. 
BCNN(17 , 19) = 17.19 = 323. 
=> a + 216 = 323 
=> a = 323 - 216 
Vậy a = 107. 
mk đưa ra cách giải đơn giản theo phương pháp sau để em áp dụng:  
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3. 
Giả sử x < y < z 
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho 
a + B(z) + r3 chia hết cho x, y, z 
Khi đó a + B(z) + r3 là BC(x, y, z)

2 tháng 1 2017

 Gọi a là số tự nhiên cần tìm. 
a chia 17 dư 5 => a = 17m + 5 
a chia 19 dư 12 => a = 19n + 12 
Do đó: 
a + 216 = 17m + 221 chia hết cho 17. 
a + 216 = 17n + 228 chia hết cho 19 
=> a + 216 chia hết cho 17 và chia hết cho 19. 
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. 
BCNN(17 , 19) = 17.19 = 323. 
=> a + 216 = 323 
=> a = 323 - 216 
Vậy a = 107. 
 

Gọi a là số tự nhiên cần tìm.

a chia 17 dư 5

=> a = 17m + 5 a chia 19 dư 12

=> a = 19n + 12

Do đó: a + 216 = 17m + 221 chia hết cho 17.

a + 216 = 17n + 228 chia hết cho 19

=> a + 216 chia hết cho 17 và chia hết cho 19.

Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.

=> a + 216 = 323

=> a = 323 - 216

Vậy a = 107

18 tháng 8 2021

Gọi a là số tự nhiên cần tìm.

a

chia 17 dư 5

=> a = 17m + 5 a chia 19 dư 12

=> a = 19n + 12

Do đó: a + 216 = 17m + 221 chia hết cho 17.

a + 216 = 17n + 228 chia hết cho 19

=> a + 216 chia hết cho 17 và chia hết cho 19.

Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.

=> a + 216 = 323

=> a = 323 - 216

Vậy a = 107

Gọi a là số tự nhiên cần tìm.

a chia 17 dư 5

=> a = 17m + 5 a chia 19 dư 12

=> a = 19n + 12

Do đó: a + 216 = 17m + 221 chia hết cho 17.

a + 216 = 17n + 228 chia hết cho 19

=> a + 216 chia hết cho 17 và chia hết cho 19.

Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.

=> a + 216 = 323

=> a = 323 - 216

Vậy a = 107

9 tháng 9 2015

x:19(dư 12) x=19n+12(1) (n là số tự nhiên)
x=19n+12 = 17n+(2n+12) mà x:17 dư 5  2n+7 chia hết cho 17
 n=5+17k(2) (k là số tự nhiên) 
Thay (2) vào (1)  x=19(5+17k)+12=323k+107
Trả lời: x=323k +107 (cho k =0,1,2,3,...)  x=107 ;430;753;1076

9 tháng 9 2015

ảnh của Lê Duy Khang ngộ ghê

avt149875_60by60.jpg

6 tháng 1 2016

 Gọi a là số tự nhiên cần tìm. 
a chia 17 dư 5 => a = 17m + 5 
a chia 19 dư 12 => a = 19n + 12 
Do đó: 
a + 216 = 17m + 221 chia hết cho 17. 
a + 216 = 17n + 228 chia hết cho 19 
=> a + 216 chia hết cho 17 và chia hết cho 19. 
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. 
BCNN(17 , 19) = 17.19 = 323. 
=> a + 216 = 323 
=> a = 323 - 216 
Vậy a = 107. 

Mình đưa ra cách giải đơn giản theo phương pháp sau để bạn áp dụng: 
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3. 
Giả sử x < y < z 
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho 
a + B(z) + r3 chia hết cho x, y, z 
Khi đó a + B(z) + r3 là BC(x, y, z)