Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt n là số nhỏ nhất chia 5 dư 1, chia 7 dư 5
Ta có: n chia 5 dư 1 => n+9 chia hết cho 5 (1)
n chia 7 dư 5 => n+9 chia hết cho 7 (2)
Từ (1)(2) và n nhỏ nhất => n+9 \(\in\) BCNN(5;7)=35
n+9=35 => n=26
b) Đặt e là số tự nhiên nhỏ nhất chia 21 dư 2, chia 12 dư 5
Ta có : e chia 21 dư 2 => e+19 chia hết cho 21 (1)
e chia 12 dư 5 => e+19 chia hết cho 12 (2)
Từ (1)(2) và e nhỏ nhất => e+19 \(\in\) BCNN(21;12)=84
e+19=84 => e=65
a,Theo đề bài, a : 5,6,7,8 (dư lần lượt 1,2,3,4)
Vậy (a+4) chia hết cho 5,6,7,8 Mà BCNN của 5,6,7,8 là: 23 . 7. 3. 5= 840
a=840-4=836
Đáp số: 836
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59
Gọi số phải tìm là A
=>A=17m+5=19n+12 (với m,n thuộc N)
=>3A+2=51m+17=57n+38
=>3A+2=17(3m+1)=19(3n+2)
=>3A+2 chia hết cho cả 17 và 19
=>3A+2=323
=>A=107
Vậy A=107
ta có :
a - 1 sẽ chia hết tất cả
a chia 5 dư 4 và chia 2 dư 1 , vậy tận cùng là 9 .
ta có thể áp dụng cách tìm BCNN vao bài này .
nếu các số đã cho từng đôi 1 là một đôi nguyên tố cùng nhau thì BCNN của chúng là tích của các số ấy :
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 = 2519
nhé !
Vì n không chia hết cho 35 nên n có dạng 35k + r (k, r thuộc N, r <35), trong="" đó="" r="" chia="" 5="" dư="" 1,="" chia="" 7="" dư="">
Số nhỏ hơn 35 chia cho 7 dư 5 là 5, 12, 19, 26, 33, trong đó chỉ có 26 chia cho 5 dư 1. Vậy r = 26.
Số nhỏ nhất có dạng 35k + 36 là 26.
a) 26
b)65
chắc chắn đúng