Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n chia 11 dư 6, chia 17 dư 12, chia 29 dư 24 => n chia 11;17;29 đều thiếu 5
=>n+5 chia hết cho 11;17;29
Vì n nhỏ nhất =>n+5 là BCNN(11;17;29)
Vì 11;17;29 nguyên tố cùng nhau
=>n+5= BCNN(11;17;29)=11x17x29=5423
=>n=5423-5=5418
b) Gọi số tự nhiên cần tìm là x
x chia 13 dư 8, chia 19 dư 14 => x chia 13;19 đều thiếu 5
=> x+5 chia hết cho 13;19 Vì x nhỏ nhất => x+5 là BCNN(13;19)
Vì 13;19 nguyên tố cùng nhau
=> x+5=BCNN(13;19)=13x19=247
=> x+5 thuộc B(247)={0;247;494;741;988;1235;1482;...}
Để có số tận cùng là 7 => x+5 tận cùng là 2 => x+5=1482
x=1482-5
x=1477
Tìm số tự nhiên N nhỏ nhất biết khi chia cho 11, 17, 29 đều dư lần lượt là 6, 12, 24.
Khi chia a cho 5;6;7;8 có số dư lần lượt là 1;2;3;4
\(\Rightarrow\)(a+4) chia hết cho 5;6;7;8
\(\Rightarrow\)(a+4) \(\in\)BC(5,6,7,8)
Ta có : 5 = 5
6 = 2 . 3
7 = 7
8 = \(2^3\)
Suy ra : BCNN(5,6,7,8) = \(2^3\).3.5.7 = 840
\(\Rightarrow\)BC(5,6,7,8) = B(840) = { 0; 840 ; 1680 ; 2520 ; .... }
\(\Rightarrow\)(a+4) \(\in\) { 0; 840 ; 1680 ; 2520 ; .... }
\(\Rightarrow\)a \(\in\){ -4 ; 836 ; 1676 ; 2516 ; ... }
Vì a là số tự nhiên nhỏ nhất có 4 chữ số
nên a = 1676
Vậy a = 1676
Hok tốt !
Theo bài ra, ta có:
n nhỏ nhất => n + 5 nhỏ nhất
n chia 11 dư 6 => n + 5 chia hết cho 11
n chia 17 dư 12 => n + 5 chia hết cho 17
n chia 29 dư 24 => n + 5 chia hết cho 29
Từ 4 điều trên => n + 5 = BCNN(11; 17; 29)
Ta thấy UCLN(11; 17; 29) = 1 => BCNN(11; 17; 29) = 11.17.29 = 5423
=> n + 5 = 5423
=> n = 5423 - 5
=> n = 5418
Gọi a là số tự nhiên cần tìm. ( a thuộc N sao)
a : 11 dư 6 => a+5 chia hết cho 11
a : 17 dư 12 => a+5 chia hết cho 17
a : 29 dư 24 => a+5 chia hết cho 29
=> a+5 thuộc BC(11,17,29) mà a nhỏ nhất => a+5 là BCNN(11,17,29)
Từ đây chắc bn tự làm nốt nha!