K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2021

gọi số cần tìm là x 

vì x : 3  dư 2 => x + 1 ⋮ 3 

    x : 7 dư 6 => x + 1 ⋮ 7

    x : 25 dư 24 => x + 1 ⋮ 24

=> x + 1 thuộc BC(3;7;24) 

có 3 = 3 ; 7 = 7; 24 = 2^2.3

=> BCNN(3;7;24) = 3.7.2^2 = 84

=> x + 1 thuộc B(84)

=> x + 1 thuộc {0;84;168; ....}

=> x thuộc {-1; 83; 167;. ...}

mà x thuộc N và x nhỏ nhất

=> x = 83

vậy số cần tìm là 83

11 tháng 8 2021

chết mình ghi lộn cái xong tính lộn luôn

24 = 2^3.3

nên BCNN = 2^3.3.7 = 168 nhé :((

 chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m ∈ N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n ∈ N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) ⇔ a + 83 chia hết cho 143 ⇒ a = 143k - 83 (k ∈ N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203 

7 tháng 6 2018

gọi số đó là a, ta có:

a chia 10 dư 3; chia 12 dư 5; chia 15 dư 8 và số đó chia hết cho 19. suy ra a=7 chia hết cho 10,12,15=> a+7 thuộc BCNN(10,12,15)

ta có BCNN(10,12,15)=60

suy ra a+7 thuộc B(60)={0,60,120,180,240,300,360,420,480,540,600,660,720,780,.....}

bạn lấy mấy số đó trừ 7 rồi xem số nào chia hết cho 19 là dc

11 tháng 8 2016

Gọi số tự nhiên cần tìm là a 

Do a chia 29 dư 5; chia 31 dư 27

=> a = 29.m + 5 = 31.n + 27 (m,n thuộc N*)

=> 29.m = 31.n + 22

=> 29.m = 29.n + 2.n + 22

=> 29.m - 29.n = 2.n + 22

=> 29.(m - n) = 2.n + 22

=> 2.n + 22 chia hết cho 29

Mà a nhỏ nhất => n nhỏ nhất => 2.n + 22 nhỏ nhất; 2.n + 22 là số chẵn

=> 2.n + 22 = 58

=> 2.n = 58 - 22 = 36

=> n = 36 : 2 = 18

=> a = 31.18 + 27 = 585

Vậy số cần tìm nhỏ nhất là 585

30 tháng 6 2015

101 nha pn ( kết bạn với tớ nha )

28 tháng 8 2015

Số tự nhiên là A, ta có: 
A = 7m + 5 
A = 13n + 4 
=> 
A + 9 = 7m + 14 = 7(m + 2) 
A + 9 = 13n + 13 = 13(n+1) 
vậy A + 9 là bội số chung của 7 và 13 => A + 9 = k.7.13 = 91k 
=> A = 91k - 9 = 91(k-1) + 82 
vậy A chia cho 91 dư -9 (hoặc 82)

12 tháng 4 2019

Số tự nhiên là A, ta có: 

A = 7m + 5 

A = 13n + 4 

=> A + 9 = 7m + 14 = 7(m + 2) 

=> A + 9 = 13n + 13 = 13(n+1) 

vậy A + 9 là bội số chung của 7 và 13 => A + 9 = k.7.13 = 91k 

=> A = 91k - 9 = 91(k-1) + 82 

vậy A chia cho 91 dư -9 (hoặc 82)