Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số tự nhiên nhỏ nhất có 4 chữ số choa cho 87 đươch thương và số dư bằng nhau là:1056
Đáp số:1056
Gọi số tự nhiên là a
Vì a:20 dư 18 => a-18 chia hết cho 20
a:40 dư 18 => a-18 chia hết cho 40
a:50 dư 18 => a-18 chia hết cho 50
a:60 dư 18 => a-18 chia hết cho 60
=> a-18 thuộc BC(20; 40; 50; 60)
20 = 22.5
40 = 23.5
50 = 2.52
60 = 22.3.5
BCNN(20; 40; 50; 60) = 23.3.52=600
a-18 thuộc BC(20; 40; 50; 60) = {0; 600; 1200;....}
=> a thuộc {-600; 582; 1182;...}
Mà a là số tự nhiên có số chữ số nhỏ hơn 4 => a = 582
Vậy số cần tìm là 582
1.Gọi số tự nhiên cần tìm là A
Chia cho số 29 dư 5 nghĩa là: A = 29p + 5 (p thuộc N)
Tương tự: Chia cho số 31 dư 28 nghĩa là: 31q + 28 (q thuộc N)
Nên 29p + 5 = 31q + 28 => 29 (p - q) = 2q + 23
Ta thấy : 2q + 23 là số lẻ => 29 (p - q) cũng là số lẻ => p - q = 1
Theo giả thiết A nhỏ nhất nên => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p- q nhỏ nhất
Do đó p - q = 1 => 2q = 29 -23 = 6
=> q = 3
Vậy số cần tìm A là : 31q + 28 = 31 x 3 + 28 = 121
2. Số đó phải lớn hơn 10. Ta có:
129 : x = b =>x.b + 10 = 129 (b là thương) => x = (129 - 10) : b = 129 : b
61 : x = c dư 10 => x.c + 10 = 61 (c là thương) => x = 51 : c
x = 119 : b = 51 : c
119 chỉ chia hết cho 7 và 17 (ngoài 1 và 119) : 119 : 17 = 7
51 chỉ chia hết cho 3 và 17 (ngoài 1 và 51) : 51 : 3 = 17
Mà số đó lớn hơn 10 nên x = 17
Vậy x = 17
giả sử số đó là abcd ta có:
abcd*87 = 61k +39 (k nguyên )
ta có: abcd >= 1000 nên:
1000*87 <= abcd*87 = 61k +39
=> k >= 1425 (vì k nguyên)
do abcd là số có 4 chũ số nhỏ nhất nên k cũng phải nhỏ nhất(k>=1425) sao cho 61k + 39 chia hết cho 87
đặt 61k + 39 = 87m (m nguyên )
<=> 61k = 87m - 39
<=> 61k = 3(29m - 13)
đặt k = 3n (n nguyên)
61n = 29m - 13
<=> m = (61n +13)/29
đặt n = 29t +15 ta đc
{n = 29t +15
{m = 61t +32
vÌ k >= 1425 => n = 29t +15 >= 1425/3 => t >= 16 (do t nguyên)
k nhỏ nhất nên t cũng nhỏ nhất
=> t = 16 => k = 1437
=> abcd = (61k +39)/87 = 87696/87 = 1008