Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Số đó chia 18 dư 8 => Cộng thêm 10 thì số đó chia hết cho 18
Số đó chia 30 dư 20 => Cộng thêm 10 thì số đó chia hết cho 30
Số đó chia 45 dư 35 => Cộng thêm 10 thì số đó chia hết cho 45
=> Cộng thêm 10 thì được số chia hết cho cả 18, 30, 45.
Vì 18 = 2.32
30 = 2.3.5
45 = 32.5
BCNN(18,30,35) = 2. 32.5 = 90
Vậy số đó cộng thêm 10 thì chia hết cho 90. => Số đó có dạng:
90.k - 10 (k là số tự nhiên).
b) Lấy lần lượt k=0; 1; ... và kiểm tra xem số có ba chữ số nhỏ nhất
k=2 thì 90.2 - 10 = 170 là số có ba chữ số nhỏ nhất.
Số đó chia 18 dư 8 => Cộng thêm 10 thì số đó chia hết cho 18
Số đó chia 30 dư 20 => Cộng thêm 10 thì số đó chia hết cho 30
Số đó chia 45 dư 35 => Cộng thêm 10 thì số đó chia hết cho 45
=> Cộng thêm 10 thì được số chia hết cho cả 18, 30, 45.
Vì 18 = 2.32
30 = 2.3.5
45 = 32.5
BCNN(18,30,35) = 2. 32.5 = 90
Vậy số đó cộng thêm 10 thì chia hết cho 90. => Số đó có dạng:
90.k - 10 (k là số tự nhiên).
b) Lấy lần lượt k=0; 1; ... và kiểm tra xem số có ba chữ số nhỏ nhất
k=2 thì 90.2 - 10 = 170 là số có ba chữ số nhỏ nhất.
gọi số cần tìm là : a
Theo bài ra ta có : a + 10 chia hết cho 18 ; 30 ; 45
Mà BCNN ( 18 , 30 , 45 ) = 90
Vậy bội chung nhỏ nhất có 3 chữ số của 18 ; 30 ; 45 là : 90 . 2 = 180
=> a + 10 = 180
a = 170
Vậy số cần tìm là 170
Tìm số tự nhiên nhỏ nhất có 3 chữ số, biết khi chia số đó cho 18,30,45 có số dư lần lượt là 8,30,35.
Gọi số tự nhiên cần tìm là a ( a ∈∈ N* )
Theo đề ra , ta có :
a chia cho 8 dư 5 ⇒a+3⋮8⇒a+3⋮8
a chia cho 10 dư 7 ⇒a+3⋮10⇒a+3⋮10
a chia cho 15 dư 12 ⇒a+3⋮15⇒a+3⋮15
a chia cho 20 dư 17 ⇒a+3⋮20⇒a+3⋮20
⇒a+3⋮8,10,15,20⇒a+3∈BC(8,10,15,20)⇒a+3⋮8,10,15,20⇒a+3∈BC(8,10,15,20)
Ta có : 8=23;10=2.5;15=3.5;20=22.58=23;10=2.5;15=3.5;20=22.5
⇒BCNN(8,10,15,20)=23.3.5=120⇒BCNN(8,10,15,20)=23.3.5=120
⇒BC(8,10,15,20)={0;120;240;...}⇒BC(8,10,15,20)={0;120;240;...}
⇒a+3∈{0;120;240;...}⇒a∈{0;117;237;...}⇒a+3∈{0;120;240;...}⇒a∈{0;117;237;...}
Mà : a nhỏ nhất ≠0⇒a=117≠0⇒a=117
Vậy số tự nhiên cần tìm là 117
Bài 1 :
Gọi 2 số cần tìm là a và b ( b<a<200 )
Ta có : ƯCLN(a;b)=15
=> a=15m và b=15n ( m>n ; m;n nguyên tố cùng nhau(1)(1) )
Do đó a-b=15m-15n=15.(m-n)=90
=> m-n=6(2)(2)
Do b<a<200 nên n<m<13(3)(3)
Từ (1);(2) và (3) ⇒(m;n)∈{(7;1);(11;5)}⇒(m;n)∈{(7;1);(11;5)}
⇒(a;b)∈{(105;15);(165;75)}
Vậy (a;b)∈{(105;15);(165;75)}
(a;b)∈{(105;15);(165;75)}
Gọi số cần tìm là a.
Theo đề bài thì suy ra a+10 chia hết cho cả 18,30,45
BCNN(18,30,45)=90. Vậy bội chung nhỏ nhất có 3 chữ số của 18,30,45 là 90.2=180
Suy ra a+10=180. Vậy a=180-10=170
số cần tìm là 170
gọi số cần tìm là : a ta có ( a + 10 ) chia hết cho 18 ; 30 ; 45
tìm BCNN của 3 số trên ta được : 90 =>( a + 10 )= 90 x 2 = 180
vậy số cần tìm a = 180 - 10 = 170