Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
=> 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ => p – q >= 1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Số phải tìm có dạng 29.a + 5 hoặc 31.b + 28 với a, b là số tự nhiên.
29.a + 5 = 31.b + 28
29.a + 5 = 29.b + 2b + 28
29a - 29b = 2b + 23
29(a-b) = 2b + 23
Vì số phải tìm là số nhỏ nhất nên có khả năng a - b = 0 hoặc a - b= 1
a-b = 0 thì bất khả vì khi đó b < 0 nên a - b =1
suy ra:
29 = 2b + 23
=> b = 3
Mà số phải tìm có dạng 31.b + 28 nên số phải tìm là
31.3 + 28 = 121
Gọi số tự nhiên cần tìm là x.
Đặt A = x - 5 x chia 29 dư 5
Cho k = 0;1;2;3; ... ta thấy khi k = 3 thì A = 116 chia hết cho 29.
Vậy x = A + 5 = 116 + 5 = 121.
Nói tóm lại x = 121