Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số các số hạng của dãy là:
(2n-1-1):2+1=n(số)
tổng là:(2n-1+1).n:2=n2=625
=>n=25 hoặc n=-25
vì n>0=>n=25
a) Ta thấy :
27 chia hết cho 3
6n = 3.2.n chia hết cho 2.n
Vậy n = 0; 1; 2; 3; 4; 5; 6; ... hay n = mọi số tự nhiên .
b) 2n + 5 chia hết cho 3n + 1
2n + 4 + 1 chia hết cho 2n + n + 1
Vì 2n + 1 chia hết cho 2n + 1 nên 4 chia hết cho n
Ư(4) = 1; 2; 4
Vậy n = 1; 2; 4
Cấm COPY
4n - 5 chia hết cho 2n - 1
ta có : 4n - 5 = 4n - 2 - 3 = ( 4n - 2 ) - 3 = 2 ( 2n - 1 ) - 3
để 4n - 5 chia hết cho 2n - 1 thì 2 ( 2n - 1 ) chia hết cho 2n - 1
=> -3 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư ( -3 )
lập bảng ta có :
2n - 1 | -3 | 3 | -1 | 1 |
n | -1 | 2 | 0 | 1 |
vậy n = { -1 ; 2 ; 0 ; 1 }
Ta có : 4n - 5 chia hết cho 2n - 1
<=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2.(2n - 1) - 3 chia hết cho 2n - 1
=> 3 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng:
2n - 1 | -3 | -1 | 1 | 3 |
2n | -2 | 0 | 2 | 4 |
n | -1 (loại) | 0 | 1 | 2 |
Để\(2n+7⋮n+1\Leftrightarrow\frac{2n+7}{n+1}\in\)\(Z\)
Mà:\(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2n+2}{n+1}+\frac{5}{n+1}=2+\frac{5}{n+1}\)
\(\Rightarrow\text{Đ}\text{ể}\frac{2n+7}{n+1}\in Z\rightarrow\frac{5}{n+1}\in Z\Rightarrow n+1\in U\left(5\right)\)
Ta có bảng sau:
n + 1 | 5 | -5 | 1 | -1 |
n | 4 | -6 | 0 | -2 |
Mà: n là số tự nhiên => n = {4 ; 0}
Ta có:2n+1 chia hết cho n-3
=>2n-6+7 chia hết cho n-3
=>2(n-3)+7 chia hết cho n-3
Mà 2(n-3) chia hết cho n-3
=>7 chia hết cho n-3
=>n-3\(\in\)Ư(7)={-7,-1,1,7}
=>n\(\in\){-4,2,4,10}
Vì n là số tự nhiên nên n\(\in\){2,4,10}
Giải :
2n + 1 ⋮ n - 3 <=> 2.( n - 3 ) + 7 ⋮ n - 3
Vì n - 3 ⋮ n - 3 , để 2.( n - 3 ) + 7 ⋮ n - 2 <=> 7 ⋮ n - 3 => n - 3 ∈ Ư ( 7 ) = { + 1 ; + 7 }
Ta có : n - 3 = 1 => n = 4 ( nhận )
n - 3 = - 1 => n = 2 ( nhận )
n - 3 = 7 => n = 8 ( nhận )
n - 3 = - 7 => n = - 4 ( nhận )
Vậy n ∈ { - 4 ; 2 ; 4 ; 8 }
số số của dãy số là :
(2n-1-1):2+1=n(số)
tổng là :(2n-1+1)n:2=2n:2.n=n2=169=132
=>n=13
duyệt đi
đặt A=1+3+5+....+(2n-1)
số số hạng của A là : [(2n-1)-1]:2+1=n
tổng A=[(2n-1)+1]xn:2=n2
=> n2=169
n2=132
=> n=13