\(⋮\)n+1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

\(\left(4n+14\right)⋮\left(n+1\right)\)

\(\Leftrightarrow4\left(n+1\right)+10⋮\left(n+1\right)\)

\(\Leftrightarrow\left(n+1\right)\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

Do \(n\in N\)

\(\Leftrightarrow n\in\left\{0;1;4;9\right\}\)

10 tháng 5 2021

Để \(A=\frac{4n-5}{n+1}\)là số nguyên thì \(4n-5⋮n+1\)

\(\Rightarrow\)\(4\left(n+1\right)-\left(4n-5\right)⋮n+1\)

\(\Rightarrow\)\(4n+4-4n+5⋮n+1\)

\(\Rightarrow\)\(9⋮n+1\)

\(\Rightarrow\)\(n+1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\Rightarrow\)\(n\in\left\{0;-2;2;-4;8;-10\right\}\)

10 tháng 5 2021

Để \(A\inℤ\) thì \(\frac{4n-5}{n+1}\inℤ\)

\(\Rightarrow4n-5⋮n+1\)

\(\Rightarrow4x+4-9⋮n+1\)

\(\Rightarrow4\left(n+1\right)-9⋮n+1\)

\(\Rightarrow9⋮n+1\)

Vì \(n\inℕ\) nên \(n+1\inℕ\)

\(\Rightarrow n+1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

Ta có bảng sau:

n + 1139-1-3-9
n0 (thỏa mãn)2 (thỏa mãn)8 (thỏa mãn)-2 (loại)-4 (loại)-10 (loại)

Vậy \(n\in\left\{0;2;8\right\}\) thì \(A\inℤ\).

15 tháng 2 2018

gọi d là ƯC(3n-2; 4n-3)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)

\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)

\(\Rightarrow\) \(1\) \(⋮\) \(d\)

\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)

\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)

\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản

15 tháng 2 2018

1/ Đặt ƯCLN(3n - 2; 4n - 3) = d

=> \(3n-2⋮d\)và \(4n-3⋮d\)

hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)

hay \(12n-8⋮d\)và \(12n-9⋮d\)

\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Leftrightarrow12n-8-12n+9⋮d\)

\(\Leftrightarrow-8+9⋮d\)

Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)

=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau

=> phân số \(\frac{3n-2}{4n-3}\)tối giản.

16 tháng 3 2018

Do \(n \in N \Rightarrow 4n+3 \in N\)

                    \(8n+193 \in N\)

Nên để A là số tự nhiên thì \(\frac{{8n+193}}{{4n+3}} \in N\)

\(\Leftrightarrow 8n+193 \in 4n+3\)

  Mà \(4n+3 \vdots 4n+3\) nên \(2(4n+3) \vdots 4n+3\)

16 tháng 3 2018

Mk xin lỗi nha, mk k kịp lm hết mong bạn thông cảm!!

12 tháng 2 2016

ai làm giúp mìnk vs!!!

12 tháng 2 2016

help me!!!!!!!!!

6 tháng 12 2017
  1.  
  2.  17; 18; 19
  3.  1
10 tháng 12 2018

\(4n+7⋮4n+1\)

\(\Rightarrow4n+1+6⋮4n+1\)

\(\Rightarrow6⋮4n+1\)

\(\Rightarrow4n+1\inƯ\left(6\right)\)

...

5 tháng 1 2019

\(\left(4n+7\right)⋮\left(4n+1\right)\)

\(\Rightarrow\left(4n+1+6\right)⋮\left(4n+1\right)\)

\(\text{Vì }\left(4n+1\right)⋮\left(4n+1\right)\text{ nên }6⋮\left(4n+1\right)\)

\(\Rightarrow4n+1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\text{Vì n }\inℕ\text{ nên loại trường hợp 4n + 1 chẵn}\)

\(\text{Vậy }4n+1\in\left\{-3;-1;1;3\right\}\)

Bạn thử từng trường hợp loại - 3 là ra nhé