Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Nếu n chẵn => n = 2k (k \(\in\) N) => 2n = 22k = 4k
=> 2n + 3 = 4k + 3 , chia cho 4 dư 3 => 2n + 3 không là số chính phương (Số chính phương chia cho 4 chỉ dư 0 hoặc 1)
+) Nếu n lẻ => n = 2k + 1 (k \(\in\) N* vì n > 1) => 2n + 3 = 22k+1 + 3 = 2.4k + 3 , chia cho 4 dư 3 => 2n + 3 không là số chính phương
Vậy Với mọi n > 1 thì 2n + 3 không là số chính phương
2^n+3 ko phải là số chính phương vì 1 số chính phương chia 2 ko dư 3
a) \(\frac{1}{x}+\frac{1}{y}=2\Leftrightarrow\frac{x+y}{xy}=2\)
\(\Leftrightarrow x+y=2xy\Leftrightarrow4xy=2x+2y\)
\(\Leftrightarrow4xy-2x-2y=0\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)=1\)
\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)
\(TH1:\hept{\begin{cases}2x-1=1\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(TH1:\hept{\begin{cases}2x-1=-1\\2y-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\left(L\right)\)
Vậy x = y = 1
b) A là số chính phương nên ta đặt \(n^2+2n+8=a^2\)
\(\Leftrightarrow\left(n+1\right)^2+7=a^2\)
\(\Leftrightarrow a^2-\left(n+1\right)^2=7\)
\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=7=1.7=7.1\)
\(=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)
Lập bảng:
\(a-n-1\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(a+n+1\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
\(a-n\) | \(2\) | \(8\) | \(0\) | \(-6\) |
\(a+n\) | \(6\) | \(0\) | \(-8\) | \(-2\) |
\(a\) | \(4\) | \(4\) | \(-4\) | \(-4\) |
\(n\) | \(2\) | \(-4\) | \(-4\) | \(2\) |
Mà n là số tự nhiên nên n = 2.
Xét n=0n=0 không thỏa mãn.
Xét n≥1n≥1
Với n∈Nn∈N thì:A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2
Mặt khác, xét :
A−(n2+n+2)2=−3n2−3n+3<0A−(n2+n+2)2=−3n2−3n+3<0 với mọi n≥1n≥1
⇔A<(n2+n+2)2⇔A<(n2+n+2)2
Như vậy (n2+n)2<A<(n2+n+2)2(n2+n)2<A<(n2+n+2)2, suy ra để $A$ là số chính phương thì
A=(n2+n+1)2⇔n4+2n3+2n2+n+7=(n2+n+1)2A=(n2+n+1)2⇔n4+2n3+2n2+n+7=(n2+n+1)2
⇔−n2−n+6=0⇔(n−2)(n+3)=0⇔−n2−n+6=0⇔(n−2)(n+3)=0
Suy ra n=2
Bài nè không bít có được vào CÂU HỎI HAY của OLM không?
1./ Dễ thấy: \(A=3^n+19\)là 1 số chẵn. Nên để A là số chính phương thì A phải chia hết cho 4.
19 chia 4 dư 3 => \(3^n\)chia 4 dư 1 (1)
- Nếu n lẻ = 2i + 1 thì: \(3^{2i+1}=3\cdot\left(3^2\right)^i=3\cdot\left(8+1\right)^i\)chia 4 dư 3 trái với khẳng định (1)
- Vậy n chẵn và có dạng n = 2k.
2./ Bài toán trở thành tìm k để: \(A=3^{2k}+19\)là số chính phương.
Viết lại A ở dạng: \(A=\left(3^k\right)^2+19\)
- k = 0 => A = 20 không phải là số chính phương
- k = 1 => A = 28 không phải là số chính phương
- k = 2 => A = 100 là số chính phương 102
- k >= 3 thì:
\(\left(3^k\right)^2< \left(3^k\right)^2+19=A< \left(3^k\right)^2+2\cdot3^k+1=\left(3^k+1\right)^2\)
A kẹp giữa 2 số chính phương liên tiếp 3k và 3k + 1 nên A không phải là số chính phương.
3./ Kết luận, với duy nhất n = 2k = 4 thì 3n + 19 là số chính phương.
giả sử
n2 +2n+12 =k2
=>k2 - n2 =2(n+6)
=>(k+n)(k-n) =2(n+6)
=> k=6 ; n =4
vậy n =4