Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
4n - 5 chia hết cho 2n + 1
=> 4n + 2 - 7 chia hết cho 2n + 1
Mà 4n + 2 chia hết cho 2n + 1
=> -7 chia hết cho 2n + 1
a)4n-5 chia hết cho 2n+1
=>4n+2-7 chia hết cho 2n-1
=>-7 chia hết cho 2n-1
=> 2n+1 thuộc vào tập hợp Ư(7)=(1;-1;7;-7)
ta có bảng sau
2n+1 | 1 | -1 | 2 | -2 |
n | 0 | -19 loại | 1/2(loại) | 3/2(loại) |
vậy..................................................................................................................
b) 12- n chia hết cho 8-n
=>4+8- n chia hết cho 8-n
=>8-n thuộc Ư(4)=(1;-1;2;-2;4;-4)
ta có bảng sau:
8-n | 1 | -1 | 2 | -2 | 4 | -4 |
n | 7 | 9 | 6 | 10 | 4 | 12 |
vậy.....................................................................................................................
a) \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)
Để có phép chia hết thì \(1⋮2n+1\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
b) \(\frac{3n-5}{4n+8}=\frac{3n+6-11}{4n+8}=\frac{3}{4}-\frac{11}{4n+8}\)
Để có phép chia hết thì \(11⋮4n+8\Leftrightarrow4n+8\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
c) \(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=1+\frac{4}{n-1}\)
Để có phép chia hết thì \(4⋮n-1\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
d) \(\frac{3n+1}{11-n}=\frac{3n-33+34}{11-n}=-1+\frac{34}{11-n}\)
Để có phép chia hết thì \(34⋮11-n\Leftrightarrow11-n\inƯ\left(34\right)=\left\{\pm1;\pm2;\pm17;\pm34\right\}\)
Lập bảng xét giá trị cho từng trường hợp
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
Vì 3 n chia hết cho (5-2n)
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}
Mặt khác 5-2n nhỏ hơn hoặc bằng 5
5-2n thuộc {-15,-5,-3,-1,1,3,5}
=>N thuộc { 10,5,4,3,2,1,0}
Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n
=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}
Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5
=>5-2n€{-15,-5,-3,-1,1,3,5}
=>N€{10,5,4,3,2,1,0}
a) n-1={-15,-5,-3,-1,1,3,5,15}
n={0,2,4,6,16}
b) n-1={-4,-2,-1,1,2,4}
n={0,2,3,5}
c)2n+1={-1,1)
n={0,}
a , 15 chia hết cho n-1 : n = 6 , 4 , 16 b , n+3 chia hết cho n-1 : n= 6+3 chia hết 4-1 c , 4n+3chia hết cho 2n+1 : n= 45+3 chia hết 23+1 đ, 2n+8 chia hết cho 3n+1 : n= 25+8 chia hết 32+1
a, n + 8 = n + 1 + 7 \(⋮\)n + 1
\(\Rightarrow\)7 \(⋮\)n + 1
\(\Rightarrow\)n + 1 = 1; 7 \(\Rightarrow\)n = 0;6
b, 2n + 5 = 2(n + 1) + 3 \(⋮\)n + 1
\(\Rightarrow\)3 \(⋮\)n + 1
\(\Rightarrow\)n + 1 = 1; 3 \(\Rightarrow\)n = 0; 2