K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

\(3n+1⋮11-n\)

\(=>3n+1⋮-\left(n-11\right)\)

\(=>3n-33+34⋮n-11\)

\(=>34⋮n-11\)

\(=>n-11\inƯ\left(34\right)\)

Nên ta có bảng sau :

Tự lập bảng nhé bạn :P

23 tháng 10 2023

3n + 4 = 3n - 6 + 10

= 3(n - 2) + 10

Để (3n + 4) ⋮ (n - 2) thì 10 ⋮ (n - 2)

⇒ n - 2 ∈ Ư(10) = {-10; -5; -2; -1; 1; 2; 5; 10}

⇒ n ∈ {-8; -3; 0; 1; 3; 4; 7; 12}

Mà n là số tự nhiên

⇒ n ∈ {0; 1; 3; 4; 7; 12}

19 tháng 12 2020

\(3n-3+5⋮n-1\)

\(\Leftrightarrow3\left(n-1\right)+5⋮n-1\)

có 3(n-1) chia hết cho n-1

\(\Rightarrow5⋮n-1\)

=> n-1 thuộc ước của 5

tức là:

n-1=5

n-1=-5

n-1=1

n-1=-1

19 tháng 12 2020

đến đấy mà không làm được thì a chịu đấy =)))))

16 tháng 12 2018

\(3n+5⋮n+1\)

\(\Leftrightarrow3\left(n+1\right)+2⋮n+1\)

\(\Leftrightarrow2⋮n+1\)

Vì n là stn => n + 1 > 1

Ta có bảng :

n + 1                  1                    2                   
n01

Vậy \(n\in\left\{0;1\right\}\)

câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html

câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html

6 tháng 11 2019

3n+1 chia hết 11-n

<=> 3n+1+(11-n).3 chia hết 11-n (11-n chia hết cho 11-n)

<=>12 chia hết 11-n

=> 11-n thuộc tập hợp Ư(12) = {1; 2; 3; 4; 6 ; 12}

Mà 11-n <12 =)) 11-n thuộc tập hợp {1; 2; 3; 4; 6}

Vậy n thuộc tập hợp {5; 7; 8; 9; 10}

Mình đánh máy nên ko dùng kí hiệu đc, mong bạn thông cảm giúp mình

6 tháng 11 2019

cảm ơn nha

AH
Akai Haruma
Giáo viên
17 tháng 12 2023

Lời giải:

$n^3+3n+1\vdots n+1$

$\Rightarrow (n^3+1)+3n\vdots n+1$

$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$

$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$

$\Rightarrow 3\vdots n+1$

$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn) 

$\Rightarrow n\in \left\{0; 2\right\}$

28 tháng 10 2020

a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:

\(n-2\)\(1\)\(2\)\(3\)\(6\)
\(n\)\(3\)\(4\)\(5\)\(8\)

Vậy \(n\in\left\{3;4;5;8\right\}\)

28 tháng 10 2020

b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
                                            hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:

\(n-1\)\(1\)\(2\)\(4\)
\(n\)\(2\)\(3\)\(5\)


Vậy \(n\in\left\{2;3;5\right\}\)