Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm số tự nhiên n nhỏ nhất để có bđt sau:
\(\left(a^2+b^2+c^2\right)^2\le n\left(a^4+b^4+c^4\right)\)
đây là bđt bunhiacopski đấy, sẽ là
\(\left(a^2+b^2+c^2\right)^2\le\left(1^2+1^2+1^2\right)\left(a^{2^2}+b^{2^2}+c^{2^2}\right)\)
\(\Rightarrow n=1^2+1^2+1^2=3\)
Ta có \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
Đặt \(n^2+3n=a\in N\Rightarrow\left(n^2+3n\right)\left(n^2+3n+2\right)=a\left(a+2\right)\)
\(=a^2+2a\)
Mà \(a^2\le a^2+2a< a^2+2a+1\Rightarrow a^2\le a^2+2a< \left(a+1\right)^2\)
\(\Rightarrow a\le\sqrt{a^2+2a}< a+1\Rightarrow a\le\left[\sqrt{a^2+2a}\right]< a+1\)
\(\Rightarrow\left[\sqrt{a^2+2a}\right]=a\)
\(\Rightarrow\left[n\left(n+1\right)\left(n+2\right)\left(n+3\right)\right]=n^2+3n=n\left(n+3\right)\)
Vậy:
\(\sum\sqrt{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\sum n\left(n+3\right)=\dfrac{n\left(n+1\right)\left(n+5\right)}{3}\)