K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2023

Để \(\dfrac{\sqrt{n}-1}{2}\inℤ\) thì \(\sqrt{n}-1⋮2\) \(\Rightarrow\) \(n\) là số chính phương lẻ.

Mà \(n< 82\) nên \(n\in\left\{1,9,25,49,81\right\}\)

Vậy \(n\in\left\{1,9,25,49,81\right\}\) thỏa mãn ycbt.

22 tháng 9 2023

giúp mik đi 

xin đấy

25 tháng 9 2023

app như cc

hỏi ko ai trả lời

15 tháng 12 2023

Để \(x=\dfrac{\sqrt{n-1}}{2}\) là số nguyên thì \(\sqrt{n-1}⋮2\)

=>\(n-1=\left(2k\right)^2=4k^2\)(k\(\in\)Z) và n>=1

=>\(n=4k^2+1\)

n<30

=>\(4k^2+1< 30\)

=>\(4k^2< 29\)

=>\(k^2< \dfrac{29}{4}\)

mà k nguyên

nên \(k^2\in\left\{0;1;4\right\}\)

\(n=4k^2+1\)

=>\(n\in\left\{1;5;17\right\}\)

16 tháng 7 2016

a) Theo đầu bài ta có:
\(\orbr{\begin{cases}\frac{n}{n+1}=\frac{n\left(n+4\right)}{\left(n+1\right)\left(n+4\right)}=\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}\\\frac{n+1}{n+4}=\frac{\left(n+1\right)\left(n+1\right)}{\left(n+1\right)\left(n+4\right)}=\frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\end{cases}}\)
Nếu \(n=0\Rightarrow2n=0< 1\Rightarrow\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}< \frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\Rightarrow\frac{n}{n+1}< \frac{n+1}{n+4}\)
Nếu \(n\ge1\Rightarrow2n\ge2>1\Rightarrow\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}>\frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\Rightarrow\frac{n}{n+1}>\frac{n+1}{n+4}\)

10 tháng 11 2024

                  1+ 2 + 3 + ... + n = 820

Xét dãy số: 1; 2; 3;...;n Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (n  -1) : 1 + 1 = n

Tổng của dãy số trên là: (n + 1).n : 2

Ta có: (n + 1).n : 2 = 820 

          (n + 1).n = 1640 

          (n + 1).n = 40.41

           n = 40

Vậy n = 40