Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g 7n chia het n-3
<=> 7n -21+21 chia het n-3
<=> 7(n-3) +21 chia het n-3
<=> 21 chia het n-3 (vi 7.(n-3) chia het cho n-3)
=> n-3 thuoc uoc cua 21
U(21) ={1;3;7;21}
=>n-3 thuoc{1;3;7;21}
n thuoc {4;6;10;24}
a) Ta có : \(\frac{n+4}{n-1}=\frac{\left(n-1\right)+5}{n-1}=\frac{n-1}{n-1}+\frac{5}{n-1}=1+\frac{5}{n-1}\)
Để \(n+4⋮n-1\Leftrightarrow\frac{5}{n-1}\in N\Leftrightarrow5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
* Với n - 1 = -1 => n = -1 + 1 = 0 ( thỏa mãn )
* Với n - 1 = 1 => n = 1+ 1 = 2 ( thỏa mãn )
* Với n - 1 = -5 => n = -5 + 1 = -4 ( ko thỏa mãn )
* Với n - 1 = 5 => n = 5 + 1 = 6 ( thỏa mãn )
Vậy với n \(\in\) { 0; 2; 6 } thì n + 4 \(⋮\)n - 1
Các bài còn lại bn làm tương tự như vậy
2n+ 18 \(⋮\) 2n+5
=> \(\left(2n+18\right)-\left(2n+5\right)⋮\left(2n+5\right)\)
=> \(\left(2n+18-2n-5\right)⋮\left(2n+5\right)\)
=> \(13⋮\left(2n+5\right)\)
=> \(\left(2n+5\right)\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
ta có bảng sau
2n+5 | -13 | -1 | 1 | 13 |
2n
|
-18 | -6 | -4 | 8 |
n | -9 | -3 | -2 | 4 |
vây n \(\in\left\{-9;-3;-2;4\right\}\)
n + 5 ⋮ n
=> 5 ⋮ n
=> n thuoc U(5) = {-1; 1; -5; 5}
7n + 8 ⋮ n
=> 8 ⋮ n
=> n thuoc U(8) = {-1; 1; -2; 2; -4; 4; -8; 8}
16 - 3n ⋮ n + 4
=> 28 - 3n - 12 ⋮ n + 4
=> 28 - 3(n + 4) ⋮ n + 4
=> 28 ⋮ n + 4
=> n + 4 thuoc U(28) = {-1; 1; -2; 2; -4; 4; -7; 7; -14; 14; -28; 28}
=> n thuoc {-5; -3; -6; -2; -8; 0; -11; 3; -18; 10; -32; 24}
n + 13 ⋮ n - 5
=> n - 5 + 18 ⋮ n - 5
=> 18 ⋮ n - 5
=> n - 5 thuoc U(18) = {-1; 1; -2; 2; -3; 3; -6; 6; -9; 9; -18; 18}
\(n+5⋮n\)
\(\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\)( do \(n\inℕ\))