K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

14 tháng 8 2021

b, nếu n=0 thì n4 -  n  +2=2(loại)

nếu n=1 thì n4 -  n  +2=2(loại)

nếu n=2 thì n4 -  n  +2=16(nhận)

nếu n>=3 thì n4-n+2>(n2)2-2n+1=(n2-1)2  

n4-n+2<(n2)2 (vì n>=3 nên -n+2<0)

suy ra (n2-1)2  <n4-n+2<(n2)2 suy ra n>=3 ko là số cp

vậy n=2

28 tháng 2 2018

Đặt P = n4 + n3 + n2 + n + 1 

Với n = 1 => A = 3 => loại

Với n \(\ge\)2 ta có: 

(2n2 + n - 1) < 4A \(\le\)(2n2 + n)2 

=> 4A = (2n2 + n)2 

Vậy: n = 2 thỏa mãn đề bài

*P/s: Mik ko chắc*

26 tháng 7 2020

Đáp án sai mà mn

Thay n=2 ta có

\(n^4+n^3+n^2+n+1\)\(=31\): ko là số chính phương

2 tháng 1 2017

n = 4 

k cho minh nha

11 tháng 11 2017

Đặt n^2+4n+2013 =a^2 ( a thuộc N*) => n^2+4n+4+2009=a^2 => (n+2)^2 +2009=a^2 => 2009= a^2-(n+2)^2 = (a-n-2)(a+n+2) mà a, n thuộc N, N* => a-n-2<a+n+2

(a-n-2)(a+n+2)=1.2009=7.287= 41.49

Bạn tự giải các trường hợp trên tìm được n=1002;138;2

12 tháng 11 2017

(+) a-n-2=1;a+n+2=2009

=> a+n+2-a+n+2=2009-1

=> 2n+4= 2008 => n= 1002 

Giải tương tự các trường hợp trên