Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Gọi d là UCLN của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d , 5n + 7 chia hết cho d
<=> 5(7n + 10) chia hết cho d , 7(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d , 35n + 49 chia hết cho d
<=> (35n + 50) - (35n + 49) chia hết cho d
<=> 35n + 50 - 35n - 49 chia hết cho d
<=> 1 chia hết cho d
=> d là ư(1)
=> d = 1
Vậy đpcm
1.a) goi d la uoc chung cua 2n+1 va 2n+3
Suy ra 2n+1 chia het cho d va 2n+3 chia het cho d
Suy ra (2n+3)-(2n+1) chia het cho d
Suy ra 2 chia het cho d
MA d la uoc cua mot so le nen d=1
VAy 2n+1 va 2n+3 la so nguyen to cung nhau.
b) Goi d la uoc chung cua 2n+5 va 3n+7
Suy ra 2n+5 chia het cho d va 3n+7 chia het cho d
Suy ra 3(2n+5)-2(3n+7) chia het cho d
Suy ra 6n+15-6n-14 chia het cho d
Suy ra 1 chia het cho d
Suy ra d=1
Vay 2n+5 va 3n+7 la so nguyen to cung nhau.
Cau 2)
Vi 2n+1 luon luon chia het cho 2n+1
Suy ra 2(2n+1) chia het cho 2n+1
Suy ra 4n+2 chia het cho 2n+1(1)
Gia su 4n+3 chia het cho 2n+1 (2)
Tu (1) va (2) suy ra (4n+3)-(4n+2) chia het cho 2n+1
suy ra 1 chia het cho 2n+1
suy ra 2n+1 =1
2n=0
n=0
Vay n=0 thi 4n+3 chia het cho 2n+1.
Mình VD cho bạn 2 bài thôi nha, các câu khác tương tự:
b)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
⇒ d ∈ Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
⇒ d ∈ Ư(2) ⇒ d ∈ {1,2}
d = 2 không là ước số của số lẻ 2n+3 ⇒ d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.
c)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
⇒ d ∈ Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
⇒ d ∈ Ư(2) ⇒ d ∈ {1,2}
d = 2 không là ước số của số lẻ 2n+3 ⇒ d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.
a) \(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ.
\(p=2k+1\)suy ra \(\left(p-1\right)\left(p+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮8\)
(vì \(k\left(k+1\right)\)là tích của hai số tự nhiên liên tiếp nên chia hết cho \(2\))
\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k\pm1\).
Khi đó \(\left(p-1\right)\left(p+1\right)\)sẽ chia hết cho \(3\).
Mà \(\left(8,3\right)=1\)nên \(\left(p-1\right)\left(p+1\right)\)chia hết cho \(8.3=24\).
b) Đặt \(\left(2n+1,3n+1\right)=d\).
Suy ra
\(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
3n+1 chia hết cho 7
=> 3n+1 thuộc B(7)
=> 3n+1 = 7k
=> 3n = 7k-1
=> n = \(\frac{7k-1}{3}\)
Gọi ƯCLN(2n+1; 7n+2) là d. Ta có:
2n+1 chia hết cho d => 14n+7 chia hết cho d
7n+2 chia hết cho d => 14n+4 chia hết cho d
=> 14n+7-(14n+4) chia hết cho d
=> 3 chia hết cho d
Giả sử 2 số này không nguyên tố cùng nhau
=> 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3
=> n-1 chia hết cho 3
=> n = 3k+1
Vậy để 2n+1 và 7n+2 nguyên tố cùng nhau thì n \(\ne\) 3k+1