K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DT
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LX
0
TS
27 tháng 10 2016
a) Để \((5x^3-7x^2+x)\) chia hết cho \(3x^n \)
=> \(5x^3;7x^2;x\) phải chia hết cho \(3x^n\)
mà n là số tự nhiên; \(x\) là hạng tử có bậc nhỏ nhất
=>\(n=1\)
b) Để \((13x^4y^3-5x^3y^3+6x^2y^2)\) chia hết cho \(5x^ny^n\)
=> \(13x^4y^3;5x^3y^3;6x^2y^2\) chia hết cho \(5x^ny^n\)
mà n là số nguyên; \(6x^2y^2\) là hạng tử có bậc nhỏ nhất
=>\(n=1\)
đáp án https://goo.gl/BjYiDy
Để phép chia sau là phép chia hết, ta cần thỏa mãn điều kiện là kết quả của phép chia phải là số tự nhiên.
Ta có phép chia: (14x5 - 7x3 = 2x) : 7xn
Để giải phương trình này, ta cần tìm giá trị của n.
Ta thực hiện các bước giải như sau:
Bước 1: Giải phương trình
(14x5 - 7x3 = 2x)
14x5 - 7x3 = 2x
70x - 21x = 2x
49x = 2x
Bước 2: Giải phương trình
49x = 2x
49x - 2x = 0
47x = 0
x = 0
Bước 3: Thay giá trị x = 0 vào phép chia (14x5 - 7x3 = 2x) : 7xn
(14x5 - 7x3 = 2x) : 7xn (14*0 - 7*0 = 2*0) : 7*n*0 0 = 0
Vậy, với mọi giá trị của n, phép chia (14x5 - 7x3 = 2x) : 7xn đều là phép chia hết.
tick cho mik nha