K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2022

Để A có giá trị là 1 số nguyên thì \(n+10⋮2n-8\)

\(\Rightarrow\)\(2\left(n+10\right)⋮2n-8\)

\(\Rightarrow\)\(2n+10⋮2n-8\)

\(\Rightarrow\)\(\left(2n-8\right)+18⋮2n-8\)

Vì \(2n-8⋮2n-8\) nên \(18⋮2n-8\)

\(\Rightarrow\)\(2n-8\inƯ\left(18\right)\)

\(\Rightarrow\)\(2n-8\in\left\{1;2;3;6;9;18\right\}\)

\(\Rightarrow\)\(2n\in\left\{9;10;11;14;17;26\right\}\)

\(\Rightarrow\)\(n\in\left\{4,5;5;5,5;7;8,5;13\right\}\)

mà \(n\in N\)

nên \(n\in\left\{5;7;13\right\}\)

20 tháng 1 2022

@TranThuHa

bạn làm sai rồi nhé

...

13 tháng 4 2017

n khác 2k -1

6 tháng 7 2017

A = \(\frac{2n+2}{2n}\) = \(\frac{2n}{2n}\) + \(\frac{2}{2n}\) = \(\frac{1}{n}\) + 1 

Để A là phân số thì n phải khác 0.

Để A là số nguyên thì n phải là ước của 1 

Suy ra n = 1 hoặc n = -1

Câu trả hay sẽ được cộng 2 điểm hỏi đáp nhớ giữ lời nhé!!!

3 tháng 7 2017

mình nghĩ bạn sai đề  mình sửa 2n-17 thành 2n+17

Ta có d thuộc UCLN(n-8,2n-17)

suy ra:    n-8  chia hết d                      và                  2n +17 chia hết d

        =  2(n-8) chia hết d                      và                  2n +17 chia hết d

Ta tính hiệu của chúng

                           2(n-8)       ---          2n + 17

                      =2n -16        ----       2n +17

                     =(2n+-2n)       ---(-16 + 17)

                     =0+1=1

suy ra UCLN của chúng là 1

phân số tối giản(đpcm)

3 tháng 7 2017

tam giác=tác giam; tác=đánh, giam=nhốt; đánh nhốt=đốt nhánh; đốt=thiêu, nhánh=cành; thiêu cành=thanh kiều. Cô giáo tên Thanh Kiều

13 tháng 3 2017

Để \(\frac{n+10}{2n-8}\in Z\) thì n + 10 chia hết cho 2n - 8

<=> 2n + 20 chia hết cho 2n - 8

=> 2n - 8 + 28 chia hết cho 2n - 8

=> 28 chia hết cho 2n - 8

=> 2n - 8 thuộc Ư(28) = {-28;-14;-7;-4;-2;1;1;2;4;7;14;28}

Mà 2n - 8 là số chẵn nên ...........................

Giải tiếp nhá

18 tháng 3 2021

a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).

Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )

\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .

                           Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).

18 tháng 3 2021

b) TƯƠNG TỰ CÂU (a)

11 tháng 7 2015

Chứng minh quy nạp \(A=10^n+18n-1\) chia hết cho 27 (1)

+n = 1; A = 27⋮27

+Giả sử (1) đúng với n = k (k ≥ 1); tức là 10k + 18k - 1⋮27

+Ta chứng minh (1) đúng với n = k+1, tức là chứng minh 10k+1 + 18(k+1) - 1⋮27.

Thật vậy, ta có: 10k+1 + 18(k+1) - 1 = 10.10k + 18k + 17 = 27.10k - 17(10+ 18k - 1) +324k = 27(10k + 12) - 17.(10k + 18k - 1)

Mà 10k + 18k - 1⋮27 (giả thiết quy nạp) và 27(10k + 12)⋮27

Nên 10k+1 + 18(k+1) - 1⋮27.

Theo nguyên lí quy nạp, ta có điều phải chứng minh.

 

13 tháng 2 2016

còn cách khác dễ hơn nhiều

4 tháng 4 2019

\(A=\frac{n+10}{2n-8}=\frac{n-4+14}{2\left(n-4\right)}=\frac{\left(n-4\right)}{2\left(n-4\right)}+\frac{14}{2\left(n-4\right)}\)

\(=\frac{1}{2}+\frac{14}{2n-8}\)

\(\Rightarrow2n-8\in U\left(14\right)=\left\{1;2;7;14;-1;-2;-7;-14\right\}\)

\(\Rightarrow2n\in\left\{9;10;15;22;7;6;1;-6\right\}\)

\(\Rightarrow n\in\left\{5;11;3\right\}\)( VÌ số tự nhiên n có giá trị là 1 số nguyên)

4 tháng 4 2019

đẻ A là số nguyên  

=> (n+10) chia hết cho (2n-8)

vì (n+10) chia hết cho 2n+8

=> 2(n+10) chia hết cho 2n+8 hay 2n+20 chia hết cho 2n+8

vì 2n+20 chia hết cho 2n+8

và 2n+8  chia hết cho 2n+8

=> (2n+20) - (2n+8) chia hết cho 2n+8

hay 12 chia hết cho 2n+8 

=> 2N+8 THUỘC ( 1,2,3,4,6,12)

=> 2N THUỘC (-7,-6,-5,-4,-2,4) VÌ 2N LÀ SỐ CHẴN  

=>2N THUỘC (-6,-4,-2,4)

=> N THUỘC (-3,-2,-1,2)

VẬY N THUỘC (-3,-2,-1,2)