K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 10 2019

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

AH
Akai Haruma
Giáo viên
17 tháng 9 2019

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

22 tháng 8 2017

  có n^1975 + n^1973 +1 = n^2 . n^1973 + n^1973 + 1 = 
n.n^1972.(n^2 + 1 ) + 1. 
Có n^1972 và n^ 2 đều có số mũ chẵn. nên ước của đa thức trên chỉ còn n + 1 + 1 
mà ta cần (n^1975+n^1973+1) là số chính phương hay x + 1 + 1 là số chính phương thỏa mãn x^1972 =x^2 nên suy ra x = 1. 

22 tháng 8 2017

n1975+n1973+1 nguyên tố khi lớn hơn 1

n1975+n1973+1 ko là số nguyên tố khi n khác 1;0

với n=0 thì BT trên bằng 1 ( loại)

với n = 1 thì BT trên bằng 3 ( nhận )

vậy n=1 thì BT trên là số nguyên tố

20 tháng 7 2018

3n^3 - 5n^2 + 3n -5 = 3n(n^2+1) - 5(n^2+1) = (n^2+1)(3n-5)

Do biểu thức là số nguyên tố nên n^2 +1 hoặc 3n-5 bằng 1 số còn lại khác 1

TH1 : n^2 + 1 = 1 => n = 0. Thay vào bt có giá trị là -5 ( vô lí do số nguyên tố phải là số > 1 )

TH2 : 3n - 5 = 1 => n = 2 => Thỏa mãn

Vậy bt trên là snt khi và chỉ khi n = 2 và bt bằng 5

20 tháng 7 2018

cam on nha

22 tháng 10 2014

khong ai biet ak ngu the

9 tháng 11 2014

Bài này không tìm được n đâu.

Giả sử n2+2002=k2(k>n)<=>2002=k2-n2=(k+n)(k-n). Vì 2002 chẵn nên ít nhất k+n hoặc k-n chẵn.

Mặc khác k+n+k-n=2k=>k+n và k-n cùng chẵn. Điều đó có nghĩa (k+n)(k-n) chia hết cho 4 nhưng 2002 không chia hết cho 4. Vậy ko tồn tại n.

a: \(5x^ny^3:4x^2y^2=\dfrac{5}{4}x^{n-2}y\)

Để đây là phép chia hết thì n-2>0

hay n>2

b: \(x^ny^{n+1}:x^2y^5=x^{n-2}y^{n-4}\)

Để đây là phép chia hết thì \(\left\{{}\begin{matrix}n-2>0\\n-4>0\end{matrix}\right.\Leftrightarrow n>4\)

13 tháng 4 2015

n4 + 4 = (n2)2 + 4.n2 + 4 - 4.n2​  = (n2 + 2)2 - (2n)2 = (n2 + 2 - 2n)(n2 +2 + 2n) = [(n -1)2 + 1].[(n + 1)2 +1] 

Nếu n = 1 thì n4 + 4 = 1.5 = 5 là số nguyên tố

Nếu n>1 thì n4 + 4 là tích của hai số lớn hơn 1 là [(n -1)2 + 1]. và [(n + 1)2 +1] . Khi nó nó không phải là số nguyên tố.

ĐS: n = 1