Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B ko là số chính phương vì B có tận là 8.
E ko là số chính phương vì E chia hết cho 3 mà không chia hết cho 9
B=100...0(có 10 chữ số 0)+8=100...08(có 9 chữ số 0) mà SCP ko có tận cùng là 8 => B ko là SCP.
E có tổng các chữ số là 3 => E chia hết cho 3 Mà SCP chia hết cho 3 thì nó phải chia hết 9 Mà E ko chia hết cho 9 => E ko là SCP.
nobita kun bạn cố lên làm cho mk bài 3 mk **** cho ( lấy nick #)
a)Ta có : \(A=\frac{10^{2014}+5}{10^{2014}-2}\)
=> \(A-1=\frac{10^{2014}+5-\left(10^{2014}-2\right)}{10^{2014}-2}=\frac{7}{10^{2014}-2}\)
Lại có : \(B=\frac{10^{2014}}{10^{2014}-7}\)
=> B - 1 = \(\frac{10^{2014}-\left(10^{2014}-7\right)}{10^{2014}-7}=\frac{7}{10^{2014}-7}\)
Vì : \(\frac{7}{10^{2014}-2}< \frac{7}{10^{2014}-7}\)
nên A - 1 < B - 1
=> A < B
b) Ta có : 4x + 1295 = 6y
=> 6y - 4x = 1295
Với x ; y \(\inℕ\)
=> 4x ; 6y \(\inℕ\)
mà 6y - 4x = 1295 (1)
=> 6y > 4x ; 6y > 1295
Vì 6y > 1295
=> \(y\ge4\)
Ta xét các trường hợp
Nếu \(x;y>0\)
=> 6y ; 4x chẵn
=> 6y - 4x chẵn (loại vì 1295 lẻ)
Nếu x = 0 ; y > 0
Khi đó (1) <=> 6y - 1 = 1295
=> 6y = 1296
=> 6y = 64
=> y = 4 (tm)
Vậy x = 0 ; y = 4
Ta có: abc = 100.a + 10.b + c = n2 - 1 (1)
cba = 100.c + 10.b + a = n2 - 4n + 4 (2)
Lưu ý :
\(\Rightarrow\)
Ai trả lời được sẽ được tặng 3 k !
Nhanh lên nha các bạn !
a, Ta có: \(M=7^{2019}+7^{2018}-7^{2017}.\)
\(=2017^{2017}\left(7^2+7-1\right)=55.2017^{2017}\)
\(=11.5.2017^{2017}⋮11\)
f,\(2P=2^2+2^3+2^4+...+2^{60}+2^{61}\)
\(2P-P=P=\left(2^2+2^3+2^4+...+2^{60}+2^{61}\right)-\left(2+2^2+2^3+...+2^{59}+2^{60}\right)\)
\(P=2^{61}-2\)
\(\left(2^n-1\right)^3=125\)
\(\Rightarrow2^n-1=5\)
\(\Rightarrow2^n=4\Leftrightarrow n=2\)
a) A = 1 + 22 + 24 + ... + 22016
=> 4A = 22 + 24 + ... + 22018
=> 4A - A = 22018 - 1
=> 3A = 22018 -1
Theo bài ra : 3A + 1 = 2n
=> 22018 - 1 + 1 = 2n
=> 22018 = 2n
=> n = 2018
b) Ta có :
3n + 1 chia hết cho 2n - 3
=> 6n - 3n + 1 chia hết cho 2n - 3
=> 3.(2n-1) + 1 chia hết cho 2n - 3
=> 3 chia hết cho 2n - 3 hay 2n - 3 \(\in\) Ư(3) = {1;3}
=> 2n \(\in\) {4;6}
=> n \(\in\) {2;3}
GIẢ SỬ: là số chính phương thì ta có:
(a thuộc N*)
Ta có 2 trường hợp như sau:
+,Trường hợp 1: a và n có 1 số chẵn và 1 số lẻ
và luôn có dạng là 2k +1 (k thuộc N)
luôn là số lẻ (1)
Mà 2014 lại là số chẵn (2)
Ta dễ dàng nhận thấy (1) mâu thuẫn với (2) (vì )
nên a và n không thể là 1 số chẵn 1 số lẻ
+,Trường hợp 2: a và n cũng chẵn hoặc cùng lẻ
chia hết cho 2 (k và q thuộc N*)
TƯơng tự ta cũng có được chia hết cho 2
chia hết cho 4 (vì 4 = 2.2) (3)
mà 2014 không chia hết cho 4 (4)
Ta thấy (3) mẫu thuẫn với (4) (vì ) nên a và n không thể cùng chẵn cùng lẻ (**)
TỪ và (**) suy ra: Không tồn tại n thuộc N để là số chính phương