Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:4n-5=4n+2-7=2(2n+1)-7
Để 4n-5 chia hết cho 2n+1 thì 7 chia hết cho 2n+1
=>2n+1\(\in\)Ư(7)={-7,-1,1,7)
=>2n\(\in\){-8,-2,0,6}
=>n\(\in\){-4,-1,0,3}
4n+21 chia hết cho 2n+3
=> 4n+6+15 chia hết cho 2n+3
Vì 4n+6 chia hết cho 2n+3
=> 15 chia hết cho 2n+3
=> 2n+3 thuộc Ư(15)
Bạn tự kẻ bảng làm nốt nha.
Ta có \(\frac{4n+21}{2n+3}=\frac{4n+6+15}{2n+3}=\frac{4n+6}{2n+3}+\frac{15}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}+\frac{15}{2n+3}=2+\frac{15}{2n+3}\)
\(\Rightarrow2n+3\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Nếu 2n + 3 = 1 thì 2n = - 2 <=> n = - 1 (loại)
Nếu 2n + 3 = 3 thì 2n = 0 <=> n = 0 (nhận)
Nếu 2n + 3 = 5 thì 2n = 2 <=> n = 1 (nhận)
Nếu 2n + 3 = 15 thì 2n = 12 <=> n = 6 (nhận)
Vậy n \(\in\) {0;1;6}
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){1,-1,2,-2,4,-4}
=>n\(\in\){2,0,3,-1,5,-3}
b)2(2n+1)+2 chia hết 2n+1
=>2 chia hết 2n+1
=>2n+1\(\in\){1,-1,2,-2}
=>n\(\in\){1,-3,3,-5}
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){1,-1,2,-2,4,-4}
=>n\(\in\){2,0,3,-1,5,-3}
b)2(2n+1)+2 chia hết 2n+1
=>2 chia hết 2n+1
=>2n+1\(\in\){1,-1,2,-2}
=>n\(\in\){1,-3,3,-5}
ta co ( 4n - 2 )-3 chia het cho 2n-1
2(2n -1)-3chia het cho 2n-1
vi 2(2n -1)chia het cho 2n - 1
nen 3 chia het cho 2n - 1
2n -1 \(\in\)U(3)={-3;-1;1;3}
2n \(\in\){-2;0;2;4}
n\(\in\){-1;0;1;2}
h nha ban, thanks
4n-5=4n-2-3=(4n-2)-3=2(2n-1)-3
Vì 2(2n-1) chia hết cho 2n-1 nên 3 chia hết cho 2n-1
2n +1 chia hết cho 2n + 1
suy ra 2 ( 2n + 1 ) chia hết cho 2n + 1
= 4n + 2 chia hết cho 2n + 1
suy ra ; ( 4n + 3 ) - ( 4n + 2 ) chia hết cho 2n + 1
= 1 chia hết cho 2n + 1
=> 2n + 1 thuộc vào Ư( 1 ) = 1
=> n = 1
Tìm số tự nhiên n để 4n+3 chia hết cho 2n+1
Giải:Ta có:4n+3=4n+2+1=2(2n+1)+1
Để 4n+3 chia hết cho 2n+1 thì 1 phải chia hết cho 2n+1
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1,1\right\}\).Vì n là số tự nhiên nên \(n\ge0\) nên 2n+1\(\ge1\)
Nên chỉ có 2n+1=1 thỏa mãn nên n=0 thỏa mãn
Ta có: 4n+3=2(2n+1) +1
Vì 2(2n+1) chia hết 2n+1
=>1 chia hết 2n+1
=>2n+1\(\in\)Ư(1)
Mà Ư(1)={1}
Do đó , ta có:
2n+1=1
2n =0
n=0
Vậy n=0
4n+3 chia hết cho 2n+1
=> 4n+2+1 chia hết cho 2n+1
Vì 4n+2 chia hết cho 2n+1
=> 1 chia hết cho 2n+1
=> 2n+1 thuộc Ư(1)
=> 2n+1 thuộc {1; -1}
=> 2n thuộc {0; -2}
=> n thuộc {0; -1}
4n+3 chia hết cho 2n+1
=> 4(n+1)-1 chia hết cho 2n+1
=> 1 chia hết cho 2n+1
=> 2n+1 \(\in\)Ư(1)=1
=> n=0
Vậy n=0
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)