Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:
2n-1 ; 2n ;2n+1 là 3 số tự nhiên liên tiếp nên tồn tại một số chia hết cho 3
Mà 2n không chia hết cho 3 (vì 2 không chia hết cho 3)
=>hoặc 2n-1 hoặc 2n+1 chia hết cho 3
=>hoặc 2n-1 hoặc 2n+1 là hợp số
Vậy 2n-1 và 2n+1 không thể đồng thời là 2 số nguyên tố
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
\(\hept{\begin{cases}a=2^n-1\\b=2^n\\c=2^n+1\end{cases}}\)=> a,b,c: Là ba số tự nhiên liên tiếp
Vậy: với n=0=> a=0; loại
n=1=> a=1 loại
n=2=>a=3;b=4;c=5 nhận.
với n>2 : Trong 3 số tn liên tiếp có : 1 số chia hết cho 3 ; vậy 2^n phải chia hết cho 3 điều này không xẩy ra
Vậy: n=2 là duy nhất