Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(\frac{3n+15}{n+1}=\frac{3n+3+12}{n+1}=\frac{3.\left(n+1\right)+12}{n+1}=3+\frac{12}{n+1}\)
Để 3n+15/n+1 có giá trị nguyên
\(\Rightarrow\frac{12}{n+1}\inℤ\Rightarrow12⋮n+1\)
\(\Rightarrow n+1\inƯ_{\left(12\right)}=\left(1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right)\)
rùi bn thay giá trị của n+1 vào để tìm n nhé!
b) ta có: \(\frac{3n+5}{n-2}=\frac{3n-6+11}{n-2}=\frac{3.\left(n-2\right)+11}{n-2}=3+\frac{11}{n-2}\)
Để 3n+5/n-2 có giá trị nguyên
=> 11/n-2 thuộc z
=> 11 chia hết cho n-2 => n-2 thuộc Ư(11) = (1;-1;11;-11)
c) ta có: \(\frac{2n+13}{n-1}=\frac{2n-2+15}{n-1}=\frac{2.\left(n-1\right)+15}{n-1}=2+\frac{15}{n-1}\)
Để 2n+13/n-1 có giá trị nguyên => 15/n-1 thuộc Z
=> 15 chia hết cho n-1 => n-1 thuộc Ư(15)=(1;-1;3;-3;5;-5;15;-15)
d) ta có: \(\frac{6n+5}{2n+1}=\frac{6n+3+2}{2n+1}=\frac{3.\left(2n+1\right)+2}{2n+1}=3+\frac{2}{2n+1}\)
\(\frac{6n+99}{3x+4}=\frac{6n+8+91}{3n+4}=2+\frac{91}{3n+4}\)
bạn tự làm nốt nha
ai k mình k lại cho
Để 2n+5/3n+1 là số tự nhiên thì 2n+5 phải chia hết cho 3n+1 hay 2n+5 thuộc ước của 3n+1
Ta có 3(2n+5)-2(3n+1) chia hết cho 3n+1
13 chia hết cho 3n+1
3n+1 | 1 | 13 |
n | 0 | 4 |
Vậy n=0,4
Để 2n+5/3n+1 là số tự nhiên thì 2n+5 phải chia hết cho 3n+1 hay 2n+5 thuộc ước của 3n+1
Ta có 3(2n+5)-2(3n+1) chia hết cho 3n+1
13 chia hết cho 3n+1
3n+1 | 1 | 13 |
n | 0 | 4 |
Vậy n= {0;4}
Để A có giá trị TN thì:
2n + 5 chia hết cho 3n + 1
Ta có: 2n + 5 chia hết cho 3n + 1
=> (3n + 1) - (2n + 5) chia hết cho 3n + 1
(3n + 1 - 2n - 5) chia hết cho 3n + 1
(n - 4) chia hết cho 3n + 1
=> 3(n - 4) chia hết cho 3n + 1
3n - 12 chia hết cho 3n + 1
3n + 1 - 13 chia hết cho 3n + 1
= > 13 chia hết cho 3n + 1
3n + 1 thuộc U(13) = {1 ; 13}
3n + 1 = 1 => n = 0
3n + 1 = 13 => n = 4
Vậy n thuộc {0 ; 4}
Ta có : vì \(n\inℕ\)=> \(n+1\inℕ\)
Để \(\frac{3n+1}{n+1}\inℕ\)
=> \(3n+1⋮n+1\)
=> \(3n+3-2⋮n+1\)
=> \(3.\left(n+1\right)-2⋮n+1\)
Ta có : Vì \(3.\left(n+1\right)⋮n+1\)
=> \(-2⋮n+1\)
=> \(n+1\inƯ\left(-2\right)\)
=> \(n+1\in\left\{1;2\right\}\)
Lập bảng xét các trường hợp
\(n+1\) | \(1\) | \(2\) |
\(n\) | \(0\) | \(1\) |
Vậy \(\frac{3n+1}{n+1}\inℕ\Leftrightarrow n\in\left\{0;1\right\}\)
Vì A \(\inℕ\)=> 3A \(\in N\)
Khi đó 3A = \(\frac{3n+27}{3n+2}=\frac{3n+2+25}{3n+2}=1+\frac{25}{3n+2}\)
3A \(\in N\)<=> 25 \(⋮3n+2\Leftrightarrow3n+2\inƯ\left(25\right)\)
=> 3n + 2 \(\in\left\{1;5;-1;-5;25;-25\right\}\)
<=> n = 1 (vì n \(\inℕ\))
Thay n = 1 vào A => A = 2 (TM)
Vậy n = 1 là giá trị phải tìm
để a là số tự nhiên thì n+9 chia hết cho 3n+2
nên 3.(n+9) cũng chia hết cho 3.n+2
suy ra 3n+27 chia hết cho 3n+2
3n+2+25 chia hết cho 3n+2
mà 3n+2 chia hết cho 3n+2 nên để 3n+2+25 là số tự nhiên
thì 25 phải chia hết cho 3n+2
suy ra 3n+2 thuộc tập Ư(25)={1,5,25} (n là số tự nhiên)
3n+2=1.n=-1/3 ko thỏa mãn n là số tự nhiên
3n+2=5,n=1,thỏa mãn
3n+2=25,n=25/3 ko thỏa mãn n là số tự nhiên
vậy n=1 thì phân số A =n+9/3n+2 là STN
để phân số sau có giá trị là số tự nhiên thì:
3n + 5 chi hết cho n + 1
<=> 3.(n + 1) + 2 chia hết cho n + 1
ta thấy: 3.(n + 1) chia hết cho n + 1
=> 2 phải chi hết cho n + 1
n + 1 thuộc Ư(2) = { 1; 2}
n thuộc { 0; 1}