Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2y+2x^2y+3x^2y+...+nx^2y=210x^2y\)
\(\Leftrightarrow x^2y\left(1+2+3+....+n\right)=210x^2y\)
\(\Leftrightarrow1+2+3+....+n=210\)
\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=210\)
\(\Leftrightarrow n\left(n+1\right)=420=20.21\)
\(\Rightarrow n=20\)
Ta có : x2y + 2x2y + 3x2y + ......+ nx2y = 210x2y
<=> x2y(1 + 2 + 3 + ...... + n) = 210x2y
=> 1 + 2 + 3 + ...... + n = 210
Áp dụng công thức \(\frac{n\left(n+1\right)}{2}=210\)
Mà 210 = 20.21
Nên n = 20
đặt x2y có dạng là a,ta có:
a+2a+3a+......+na=210a
=>a.(1+2+3+.....+n)=210.a
=>\(a.\frac{n\left(n+1\right)}{2}=210a\Rightarrow\frac{n\left(n+1\right)}{2}=\frac{210a}{a}=210\Rightarrow n\left(n+1\right)=210.2=420\)
=>n(n+1)=420=20.21=20.(20+1)=>n=20
Vậy n=20 thì thỏa mãn đẳng thức
x3y4 + 2x3y4 + ........+ nx3y4 = 820x3y4
=> x3y4 . (1 + 2 + 3 + ..... + n) = 820x3y4
=> 1 + 2 + 3 + ..... + n = 820
=> n = 40
a,\(\left(3x^2.y^2\right).\left(-2xy^2\right)\)
\(=\left(-6\right).x^3.y^4\)
Hok tốt
x2y + 2x2y + 3x2y + 4x2y + .... + nx2y = 55x2y
\(\Rightarrow x^2y\left(1+2+...+n\right)=55x^2y\)
\(\Rightarrow1+2+...+n=55\)
\(\Rightarrow\dfrac{\left(\dfrac{n-1}{1}+1\right).\left(n+1\right)}{2}=55\)
\(\Rightarrow n\left(n+1\right)=55.2=110\)
\(\Rightarrow n^2+n-110=0\)
\(\Rightarrow n^2-10n+11n-110=0\)
\(\Rightarrow n\left(n-10\right)+11\left(n-10\right)=0\)
\(\Rightarrow\left(n-10\right)\left(n+11\right)=0\)
\(\Rightarrow n-10=0\) hay \(n+11=0\)
\(\Rightarrow n=10\left(nhận\right)\) hay \(n=-11\left(loại\right)\)