Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\frac{1^4}{3^4}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow n=4\)
Vậy n = 4
b) \(\frac{-512}{343}=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow\frac{-8^3}{7^3}=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow\left(\frac{-8}{7}\right)^3=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow n=3\)
Vậy n = 3
1.a.\(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2=\frac{17}{12}.\left(\frac{1}{20}\right)^2=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
b. \(2\div\left(\frac{1}{2}-\frac{2}{3}\right)^3=2\div\left(-\frac{1}{6}\right)^3=2\div\left(-\frac{1}{216}\right)=2.\left(-216\right)=-432\)
2.a.\(\frac{16}{2^n}=2\Rightarrow2^n=16:2=8=2^3\Rightarrow n=3\)
b.\(\frac{\left(-3\right)^n}{81}=-27\Rightarrow\left(-3\right)^n=-27.81=-2187=\left(-3\right)^7\Rightarrow n=7\)
c. \(8^n:2^n=4\Rightarrow\left(8:2\right)^n=4\Rightarrow4^n=4^1\Rightarrow n=1\)
Bài 1 và Bài 2 dễ, bn có thể tự làm được!
Bài 3:
a) ta có: 1020 = (102)10 = 10010
=> 10010>910
=> 1020>910
b) ta có: (-5)30 = 530 =( 53)10 = 12510 ( vì là lũy thừa bậc chẵn)
(-3)50 = 350 = (35)10= 24310
=> 12510 < 24310
=> (-5)30 < (-3)50
c) ta có: 648 = (26)8= 248
1612 = ( 24)12 = 248
=> 648 = 1612
d) ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)
\(\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
a) Câu này thiếu đề nhé bạn.
b) \(\frac{25}{5^n}=5\)
\(\Rightarrow5^n=25:5\)
\(\Rightarrow5^n=5\)
\(\Rightarrow5^n=5^1\)
\(\Rightarrow n=1\)
Vậy \(n=1.\)
c) \(\frac{81}{\left(-3\right)^n}=-243\)
\(\Rightarrow\left(-3\right)^n=81:\left(-243\right)\)
\(\Rightarrow\left(-3\right)^n=-\frac{1}{3}\)
\(\Rightarrow\left(-3\right)^n=\left(-3\right)^{-1}\)
\(\Rightarrow n=-1\)
Vậy \(n=-1.\)
e) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow n=4\)
Vậy \(n=4.\)
f) \(\left(-\frac{3}{4}\right)^n=\frac{81}{256}\)
\(\Rightarrow\left(-\frac{3}{4}\right)^n=\left(-\frac{3}{4}\right)^4\)
\(\Rightarrow n=4\)
Vậy \(n=4.\)
Chúc bạn học tốt!
d) \(\frac{1}{2}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\left(\frac{1}{2}+4\right)=288\)
\(\Rightarrow2^n.\frac{9}{2}=288\)
\(\Rightarrow2^n=288:\frac{9}{2}\)
\(\Rightarrow2^n=64\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
Vậy \(n=6.\)
g) \(-\frac{512}{343}=\left(-\frac{8}{7}\right)^n\)
\(\Rightarrow\left(-\frac{8}{7}\right)^n=\left(-\frac{8}{7}\right)^3\)
\(\Rightarrow n=3\)
Vậy \(n=3.\)
h) \(5^{-1}.25^n=125\)
\(\Rightarrow5^{-1}.5^{2n}=5^3\)
\(\Rightarrow5^{-1+2n}=5^3\)
\(\Rightarrow-1+2n=3\)
\(\Rightarrow2n=3+1\)
\(\Rightarrow2n=4\)
\(\Rightarrow n=4:2\)
\(\Rightarrow n=2\)
Vậy \(n=2.\)
k) \(3^{-1}.3^n+6.3^{n-1}=7.3^6\)
\(\Rightarrow3^{n-1}+6.3^{n-1}=7.3^6\)
\(\Rightarrow3^{n-1}.\left(1+6\right)=7.3^6\)
\(\Rightarrow3^{n-1}.7=7.3^6\)
\(\Rightarrow n-1=6\)
\(\Rightarrow n=6+1\)
\(\Rightarrow n=7\)
Vậy \(n=7.\)
Chúc bạn học tốt!
a)\(\left(\frac{3}{5}\right)^5.x=\left(\frac{3}{7}\right)^7\)
\(x=\left(\frac{3}{7}\right)^7\div\left(\frac{3}{7}\right)^5\)
\(x=\left(\frac{3}{7}\right)^2\)
\(x=\frac{9}{49}\)
Vậy...
b)\(\left(-\frac{1}{3}\right)^3.x=\left(\frac{1}{3}\right)^4\)
\(\left(-\frac{1}{3}\right)^3.x=\left(-\frac{1}{3}\right)^4\)
\(x=\left(-\frac{1}{3}\right)^4\div\left(\frac{-1}{3}\right)^3\)
\(x=-\frac{1}{3}\)
Vậy...
c)\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
=>\(x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{2}\)
\(x=\frac{5}{6}\)
Vậy...
d)\(\left(x+\frac{1}{4}\right)^4=\left(\frac{2}{3}\right)^4\)
=>\(x+\frac{1}{4}=\frac{2}{3}\)
\(x=\frac{2}{3}-\frac{1}{4}\)
\(x=\frac{5}{12}\)
Vậy...
Phù, mãi mới xong, tk cho mk nha bn
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
\(a,\left[\left(0,5\right)^3\right]^n=\frac{1}{64}\Rightarrow\left(0,125\right)^n=0,125^2\Rightarrow n=2\)
\(b,\frac{64}{\left(-2\right)^{n+1}}=4\Rightarrow\left(-2\right)^{n+1}=\frac{64}{4}\Rightarrow\left(-2\right)^{n+1}=16\Rightarrow\left(-2\right)^{n+1}=\left(-2\right)^4\)
\(\Rightarrow n+1=4\Rightarrow n=3\)
\(c,\left(\frac{1}{3}\right)^{n+1}=\frac{1}{81}\Rightarrow\left(\frac{1}{3}\right)^{n+1}=\left(\frac{1}{3}\right)^4\Rightarrow n+1=4\Rightarrow n=3\)
\(d,\left(\frac{3}{4}\right)^n.\frac{1}{2}=\frac{81}{512}\Rightarrow\left(\frac{3}{4}\right)^n=\frac{81}{512}:\frac{1}{2}=\frac{81}{256}\Rightarrow\left(\frac{3}{4}\right)^n=\left(\frac{3}{4}\right)^4\Rightarrow n=4\)