K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

n + 6 chia hết cho n

Do n chia hết cho n => 6 chia hết cho n

Mà n thuộc N => \(n\in\left\{1;2;3;6\right\}\)

15 chia hết cho 2n + 1

Mà 2n + 1 là số lẻ; \(n\in N\)nên \(2n+1\ge1\)=> \(2n+1\in\left\{1;3;5;15\right\}\)

=> \(2n\in\left\{0;2;4;14\right\}\)

=> \(n\in\left\{0;1;2;7\right\}\)

22 tháng 11 2016

n+6 chi het cho n

Do n chia het cho n =>6 chia het cho n

Ma n thuoc N=>nE{1;2;3;6}

15 chia het cho 2n+1

Mà 2n+1 là số lẻ:n E N nen 2n + 1>_ 1 => 2n +1 E { 1;3;5;15 }

=> 2n E { 0;2;4;14 }

=> n E { 0;1;2;7 }

a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên

8 tháng 12 2015

a) Ta thấy :

27 chia hết cho 3

6n = 3.2.n chia hết cho 2.n

Vậy n = 0; 1; 2; 3; 4; 5; 6; ... hay n = mọi số tự nhiên .

b) 2n + 5 chia hết cho 3n + 1

2n + 4 + 1 chia hết cho 2n + n + 1

Vì 2n + 1 chia hết cho 2n + 1 nên 4 chia hết cho n

Ư(4) = 1; 2; 4

Vậy n = 1; 2; 4

Cấm COPY

 

13 tháng 4 2024

Bài 1

n + 2 ⋮ n + 1

n + 1 + 1 ⋮ n + 1

            1 ⋮ n + 1

n + 1 \(\in\) Ư(1) = {-1; 1}

\(\in\) {-2; 0}

Vì n \(\in\) N nên n = 0

Vậy n = 0

 

13 tháng 4 2024

Bài 2:

2n + 7  ⋮ n + 1

2(n + 1) + 5 ⋮ n + 1 

                5 ⋮ n + 1

         n + 1  \(\in\) Ư(5) = {-5; -1; 1; 5}

        n \(\in\) {-6; -2; 0; 4}

Vì n \(\in\) N nên n \(\in\) {0; 4}

Vậy n \(\in\) {0; 4}

7 tháng 10 2017

Để\(2n+7⋮n+1\Leftrightarrow\frac{2n+7}{n+1}\in\)\(Z\)

Mà:\(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2n+2}{n+1}+\frac{5}{n+1}=2+\frac{5}{n+1}\)

\(\Rightarrow\text{Đ}\text{ể}\frac{2n+7}{n+1}\in Z\rightarrow\frac{5}{n+1}\in Z\Rightarrow n+1\in U\left(5\right)\)

Ta có bảng sau:

          n + 1          5           -5          1           -1
             n          4           -6          0           -2

Mà: n là số tự nhiên => n = {4 ; 0}

6 tháng 12 2017

a) Ta có:

\(5⋮n+1\)

\(\Rightarrow n+1\in U\left(5\right)=\left\{1;5\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=5\Rightarrow n=4\end{matrix}\right.\)

Vậy \(n\in\left\{0;4\right\}\)

b) Ta có:

\(15⋮n+1\)

\(\Rightarrow n+1\in U\left(15\right)=\left\{1;3;5;15\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=3\Rightarrow n=2\\n+1=5\Rightarrow n=4\\n+1=15\Rightarrow n=14\end{matrix}\right.\)

Vậy \(n\in\left\{0;2;4;14\right\}\)

c) Ta có:

\(n+3⋮n+1\)

\(\Rightarrow\left(n+1\right)+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\in U\left(2\right)=\left\{1;2\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=2\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{0;1\right\}\)

d) Ta có:

\(4n+3⋮2n+1\)

\(\Rightarrow\left(4n+2\right)+1⋮2n+1\)

\(\Rightarrow2\left(2n+1\right)+1⋮2n+1\)

\(\Rightarrow1⋮2n+1\)

\(\Rightarrow2n+1\in U\left(1\right)=\left\{1\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow2n+1=1\)

\(\Rightarrow n=0\)

Vậy \(n=0\)

3 tháng 2 2019

Toi quen mat cach  lam roi xin loi nhe

9 tháng 11 2018

Vì n chia hết cho 2 => n(n-2) chia hết cho 2 mà chúng chia hết cho 5 => n(n-2) chia hết cho 10 => n(n-2) có tạn cùng = 0

=> n có tạn cùng là 0 hoặc 2.