Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(n^2+3n+6⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+6⋮n+3\)
\(\Leftrightarrow6⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(6\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{-4;-2;-6;0\right\}\)
Á :''( SR nha :(. Bạn ghi tiếp phần cuối như sau nhé :
Vì n là số tự nhiên
=> n = 0
a/ nếu là tìm x thuộc Z thi giải như sau
n+5 chia hết cho n-2
mà n-2 chia hết cho n-2
=> [n+5] - [n-2] chia hết cho n-2
=> 7 chia hết cho n-2
Ta có bảng :
n-2 | -1 | -7 | 1 | 7 |
n | 1 | -5 | 3 | 9 |
Vậy ..........
b/
2n+1 chia hết cho n-5
n-5 chia hết cho n-5
=> 2.[n-5] chia hết cho n-5 => 2n -10 chia hết cho n-5
=> [2n+1] -[2n-10] chia hết cho n-5
=> 11 chia hết cho n-5
lập bảng t.tự câu a
c/ bạn xem lại đề
Để n+3 chia hết n+1 \(\Rightarrow\) n+3-(n+1)\(⋮\) n+1
\(\Rightarrow\)n+3-n-1\(⋮\)n+1
\(\Rightarrow\) 2\(⋮\)n+1
\(\Rightarrow\)n+1\(\in\){2;1}
lập bảng
n+1 | 1 | 2 |
n | 0 | 1 |
Vậy n\(\in\){0;1} thì n+3\(⋮\)n+1
Ta có n+3=(n+1) +2\(\Rightarrow\)n+3\(⋮\)n+1 khi n+1 la ước của 2
Ư(2) | -2 | -1 | 1 | 2 |
n | -3(loại) | -2(loại) | 0 | 1 |
Ta có n2+3n+4=n(n+3) +4 \(\Rightarrow\)n2+3n+4\(⋮\)n+3 khi n+3 thuộc ước của 4
Vậy n=1