Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n chia 11 dư 6, chia 17 dư 12, chia 29 dư 24 => n chia 11;17;29 đều thiếu 5
=>n+5 chia hết cho 11;17;29
Vì n nhỏ nhất =>n+5 là BCNN(11;17;29)
Vì 11;17;29 nguyên tố cùng nhau
=>n+5= BCNN(11;17;29)=11x17x29=5423
=>n=5423-5=5418
b) Gọi số tự nhiên cần tìm là x
x chia 13 dư 8, chia 19 dư 14 => x chia 13;19 đều thiếu 5
=> x+5 chia hết cho 13;19 Vì x nhỏ nhất => x+5 là BCNN(13;19)
Vì 13;19 nguyên tố cùng nhau
=> x+5=BCNN(13;19)=13x19=247
=> x+5 thuộc B(247)={0;247;494;741;988;1235;1482;...}
Để có số tận cùng là 7 => x+5 tận cùng là 2 => x+5=1482
x=1482-5
x=1477
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
Đặt A=102+18n-1
=10n-1+18n
=9999...9(n c/số 9)+18n
=9.11111...1(n c/số 1)+9.2n
=9(1111...1(n c/số 1+2n)
mà 111...1(n c/số 1)=n+9q
=>A=9.(9q+n+2n)
=>A=9(9q+3n)
=9.3.(3q+n)
=27(3q+n)
=>\(A⋮27\)
vậy...(đccm)
mấy bài sau dễ òi
bn tự làm nhé
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
Ta có: \(\frac{a}{b}=\frac{5}{3}\Rightarrow a=5m;b=3m\left(m\inℕ^∗\right)\)
\(\frac{b}{c}=\frac{12}{21}\Rightarrow b=12n;c=21n\left(n\inℕ^∗\right)\)
\(\frac{c}{d}=\frac{6}{11}\Rightarrow c=6k;d=11k\left(k\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}3m=12n\\4n=6k\end{cases}\Rightarrow\hept{\begin{cases}3n⋮12\\4n⋮6\end{cases}\Rightarrow}\hept{\begin{cases}n⋮4\\2n⋮3\end{cases}\Rightarrow}\hept{\begin{cases}n⋮4\\n⋮3\end{cases}}}\)
\(\Rightarrow n\in BC\left(3,4\right)\)
Mà b nhỏ nhất \(\Rightarrow n\in BCNN\left(3,4\right)=12\)
\(\Rightarrow b=12\cdot12=144;c=21\cdot12=252\)
Với b=144\(\Rightarrow\frac{a}{144}=\frac{5}{3}\Rightarrow\frac{a}{144}=\frac{240}{144}\)
Với c=252\(\Rightarrow\frac{252}{d}=\frac{6}{11}\Rightarrow\frac{252}{d}=\frac{252}{462}\)
Vậy a=240; b=144; c=252; d=462
P/s: Mik ko biết có đúng không?(phàn tính). Phần cách làm và lí luận thì đúng rồi!!!! Đạt luôn
a)tìm số tự nhiên a biết khi chia a cho 4 thì được thương là 14 và có số dư là 12
=> a = 4 x 14 +12 = 68
b)tìm số tự nhiên m , biết khi chia m cho 13 thì được thương là 4 và số dư là 12
=> m = 13 x 4 +12 = 64
c)tìm số tự nhiên n , biết khi chia n cho 14 thì được thương là 5 và số dư là 13
=> n = 14 x 5 + 13 = 83
D. 11
Bài dễ lém bn ạ :VVV