\(\left(1994!\right)^{1995}\)chia h...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

max k = 1995x7 = 13965

Vì 1995=3.5.7.19 = 3.665 = 15.133 = 5.399=21.95=7.285 = 19.105 =35.57, trong (1994!)^1995 có các số trên ^1995

24 tháng 12 2018

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

24 tháng 12 2018

cảm ơn nhiều

2 tháng 2 2020

2. Ta có: n + S ( n ) + S ( S (n) ) = 60

Có: n \(\ge\)S ( n ) \(\ge\)S ( S (n) ) 

=> n + n + n  \(\ge\)n + S ( n ) + S ( S (n) ) \(\ge\)60

=> 3n \(\ge\)60

=> n \(\ge\)20

=> 20 \(\le\)\(\le\)60 

Đặt: n = \(\overline{ab}\)

=> \(2\le a\le6\)

và \(2+0\le a+b\le5+9\)

=> \(2\le a+b\le14\)

a + b234567891011121314
\(\overline{ab}\)56545250484644424047454341
 loạiloạiloạitmloạiloạitmloạiloạitmloạiloạiloại

Vậy n = 50; n = 44 hoặc n = 47

2 tháng 2 2020

1. Ta có: a + 3c = 2016 ; a + 2b = 2017

=> a + 3c + a + 2b = 2016 + 2017

=> 2a + 2b + 2c + c = 4033

=> 2 ( a + b + c ) = 4033 - c 

mà a, b, c không âm 

=> c \(\ge\)0

Để P = a + b + c  đạt giá trị lớn nhất 

<=> 2 ( a + b + c ) đạt giá trị lớn nhất

<=> 4033 - c đạt giá trị lớn nhất 

<=> c đạt giá trị bé nhất

=> c = 0

=> a = 2016 ; b = ( 2017 - 2016 ) : 2 = 1/2

Vậy max P = 0 + 2016 + 1/2 = 4033/2

27 tháng 7 2016

\(\left(2^4\right)^9=2^{36}=2^{35}.2\)

\(32^n=\left(2^5\right)^n=2^{5n}\)

để (24)9 chia hết cho 32n với n lớn nhất thì 5n=35 hay n=7

27 tháng 7 2016

Ta có (24)9= 236

Mà 32n= (25)n= 25n

=> n  lớn nhất là 7

 Vậy n = 7

15 tháng 7 2017

a) \(VT=\left(x^2-y^2\right)^{1995}=\left[\left(x-y\right)\left(x+y\right)\right]^{1995}\)

\(=\left(x+y\right)^{1995}.\left(x-y\right)^{1995}=VP\)

\(\Rightarrow\)đpcm

23 tháng 10 2016

\(\left(\frac{1}{2}\right)^n=\left(\frac{1}{8}\right)^5\)

\(\left(\frac{1}{2}\right)^n=\left(\frac{1^3}{2^3}\right)^5\)

\(\left(\frac{1}{2}\right)^n=\left[\left(\frac{1}{2}\right)^3\right]^5\)

\(\left(\frac{1}{2}\right)^n=\left(\frac{1}{2}\right)^{15}\)

n = 15

23 tháng 10 2016

\(\left(\frac{1}{2}\right)^n=\left(\frac{1}{8}\right)^5\)

\(\Rightarrow\left(\frac{1}{2}\right)^n=\left(\frac{1}{2}\right)^{3.5}\)

\(\Rightarrow\left(\frac{1}{2}\right)^n=\left(\frac{1}{2}\right)^{15}\)

\(\Rightarrow n=15\)

Vậy n = 15