Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
\(A=\frac{2n+6}{n+1}=\frac{2n+2+4}{n+1}=\frac{2\left(n+1\right)+4}{n+1}=2+\frac{4}{n+1}\)
Để \(2+\frac{4}{n+1}\) là số nguyên tố <=> \(\frac{4}{n+1}\) là số nguyên tố
Mà n là số tự nhiên => n + 1 thuộc ước nguyên dương của 4
=> Ư(4) = { 1; 2; 4 }
Với n + 1 = 1 => n = 0 => A = 6 ko là số nguyên tố ( loại )
Với n + 1 = 2 => n = 1 => A = 4 ko là số nguyên tố ( loại )
Với n + 1 = 4 => n = 3 => A = 3 là số nguyên tố ( chọn )
Vậy n = 3 thì A là số nguyên tố
Để a là số nguyên tố thì phân số a tối giản
=} ƯCLN của tử và mẫu là 1
Gọi d = ƯCLN(2n+6,n+1)
Khi đó n+1 chia hết cho d =} 2(n+1) chia hết cho d
=} 2n+2 chia hết cho d
Do đó (2n+6) - (2n+2) chia hết cho d
Hay 2n+6-2n-2 chia hết cho d
=} 4 chia hết cho d =} d£ Ư(4) = { 1;2;4 }
Vì 2n+6 chia hết cho 2 mà n+1 ko chia hết cho 2
=} d khác 2
Mik chỉ làm được đến đây thôi
Phần còn lại bạn tự tìm cách chứng minh d=1 nha
cho mik với
=} là suy ra
£ là thuộc
mik pít đấy:giải:
ta có 2n+6 chia hết cho n+1
2n+6 = 2n+2+4 =2(n+1)+4
mà 2(n+1)chia hết cho n ,suy ra
4 cũng phải chia hết cho n =>n thuộc ư(4)
Ư(4)=1;2;4
thử chọn:
n+1=1=> n=0(0 ko pải là số nguyên tố nên ta loại)
n+1=2=>n=1(1 ko pải là số nguyên tố nên ta loại)
n+1=4=>n=3(3 là số nguyên tố nên ta chọn)
Vậy n=3
gọi \(d\in UC\left(2n+6;n+1\right)\)
\(\text{= 1 ( 2n + 6 ) - 2 ( n + 1 ) }⋮d\)
\(\text{= 2n + 6 - 2n - 1}⋮d\)
\(=5⋮d\) \(\Rightarrow d\in U\left(5\right)=\left\{1;-1;5;-5\right\}\)
thay 1 vào ( t/m )
thay 5 vào ( ko t/m )
thay -1 ; -5 ( ko phải là số tự nhiên nên ko t/m )
vậy n = 1