K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
8 tháng 7 2024
Lời giải:
Gọi số tự nhiên cần tìm là $a$. Theo bài ra thì:
$a$ chia $13$ dư $8$ nên $a=13k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 5 nên:
$a-5\vdots 11$
$\Rightarrow 13k+3\vdots 11$
$\Rightarrow 13k+3-11.5\vdots 11$
$\Rightarrow 13k-52\vdots 11$
$\Rightarrow 13(k-4)\vdots 11$
$\Rightarrow k-4\vdots 11$
$\Rightarrow k=11m+4$ với $m$ tự nhiên.
$a=13k+8=13(11m+4)+8=143m+60$
Để $a$ là số tự nhiên nhỏ nhất có 3 chữ số thì $m$ cũng phải là stn nhỏ nhất thỏa mãn $143m+60$ có 3 c/s.
$\Rightarrow 143m+60\geq 100\Rightarrow m\geq 0,27$
Mà $m\in\mathbb{N}$ nên $m$ nhỏ nhất bằng 1.
$\Rightarrow a=143+60=203$
QX
0
NT
0
Dùng Cách phối hợp nhiều phương pháp em nhé!
Đó là phương pháp chặn kết hợp với tìm nghiệm nguyên.
Gọi số đó là A thì theo bài ra ta có:
A = 2023.k + 228 (k \(\in\) N* )
A = 2024n + 218 (n \(\in\) N*)
⇒ 2023k + 228 = 2024n + 218
⇒ 2024n + 218 - 228 = 2023k
⇒ 2024n - 10 = 2023k
⇒ k = \(\dfrac{2024n-10}{2023}\)
⇒ k = n + \(\dfrac{n-10}{2023}\)
vì k nguyên nên n - 10 ⋮ 2023
⇒n - 10 \(\in\) B(2023) = {0; 2023;...;}
⇒ n \(\in\) {10; 2033;..;} (1)
Vì A là số có 5 chữ số nên A ≤ 99999
⇒ 2024n + 218 ≤ 99999
2024n ≤ 99999 - 218
2024n ≤ 99781
n ≤ 99781 : 2024
n ≤ 49,298 (2)
Kết hợp 1 và (2) ta có: n = 10
Vậy số cần tìm là: 2024 x 10 + 218 = 20458
Kết luận:...
=20458