Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Qua 1000 điểm phân biệt không thẳng hàng ta vẽ được số đường thẳng là: \(\frac{1000\left(1000-1\right)}{2}=499500\)(đt)
Qua 3 điểm phân biệt không thẳng hàng ta vẽ được số đường thẳng là: \(\frac{3\left(3-1\right)}{2}=3\) (đt)
Mà qua 3 điểm thẳng hàng chỉ vẽ được 1 đường thẳng
=> Tổng số đường thẳng là: 499500-3+1=499498 (đt)
1/ abc-cba=6b3 (a khác 0; 0<a, b, c<10)
<=> 100a+10b+c-(100c+10b+a)=600+10b+3
<=> 100a+10b+c-100c-10b-a=603+10b
<=> 99a=99c+10b+603
=> 6<a<10
+/ a=7 => 693=99c+10b+603 <=> 90=99c+10b => c=0; b=9
+/ a=8 => 792=99c+10b+603 <=> 189=99c+10b => c=1; b=9
+/ a=9 => 891=99c+10b+603 <=> 288=99c+10b => c=2; b=9
Các số abc cần tìm là: 709; 819 và 929
số tự nhiên có 3 chữ số mình sẽ qui ước là abc| (điều kiện: a khác 0; a, b, c là các chữ số trong khoảng từ 0 đến 9)
abc| = (a +b + c)*11
<=> a*100 + b*10 + c = a*11 +b*11 +c*11
<=> a*89 = b + c*10
xét thấy b và c lớn nhất = 9
suy ra vế phải lớn nhất bằng 99
suy ra vế trái lớn nhất bằng 99
suy ra a chỉ có thể bằng 1 (nếu a = 2 thì vế trái đã bằng 178)
a = 1 suy ra
b + c*10 = 89
xét thấy c*10 có tận cùng bằng 0
89 có tận cùng = 9 suy ra b =9 suy ra c =8
thử lại 198 = (1+9+8)*11
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được:
99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 \(\le\) abc \(\le\) 999 nên:
100 \(\le\) n^2 -1 \(\le\) 999 => 101 \(\le\) n^2 \(\le\) 1000 => 11 \(\le\) 31 => 39 \(\le\) 4n - 5 \(\le\) 119
Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
Thử lại thấy đúng. Vậy có một số tự nhiên có ba chữ số thoả mãn yêu cầu đề bài là 675
nhé
Vì 103=1000 mà abc là cs có 3 cs
=>a+b+c<10
vì 43=64,53=125
=> a+b+c>4
+Nếu a+b+c=5
=>53=125 => abc=125 (vô lí)
+nếu a+b+c =6 => abc= 63=216( vô lí)
+nếu a+b+c=7=> abc=73=343(vô lí)
+nếu a+b+c=8=> abc= 83=512 chọn
nếu a+b+c=9=> abc=93=729(vô lí)
vậy abc=512
gần đ