Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi số có 3 chữ số là abc, xóa chữ số hàng trăm thì được số bc
=> abc = 9 . bc
100a + 10b + c = 9 . (10b + c)
100a + 10b + c = 90b + 9c
100a = 80b + 8c (Trừ cả hai vế của dòng trên đi 10b và c)
50a = 40b + 4c (Chia cả hai vế của dòng trên cho 2)
50a = 4 (10b + c) (*)
=> 50a phải chia hết cho 4 => a phải chia hết cho 4 (vì số 50 không chia hết cho 4 nên thừa số a phải chia hết cho 4 để tích 50a chia hết cho 4)
=> a = {0; 4; 8; 12; 16}
Trường hợp 1 : a = 0 (loại vì số abc trở thành số có 2 chữ số)
Trường hợp 2: a = 4, thay vào (*) => 50 . 4 = 4 . (10b + c)
=> 10b + c = 50 => b và c là thương của phép chia 50 chia cho 10
Ta có: 50 chia cho 10 bằng 5 dư 0 => b = 5, c = 0
=> Số cần tìm là 450
Trường hợp 3: a = 8, thay vào (*) => 50 . 8 = 4 . (10b + c)
=> 10b + c = 100 => b và c là thương của phép chia 100 chia cho 10
Vì b \(\le\) 9, c \(\le\) 9 => 10b + c \(\le\) 10 . 9 + 9 = 99 < 100
Không có chữ số b và c nào thỏa mãn 10b + c = 100
Trường hợp 4: a = 12, thay vào (*) => 50 . 12 = 4 . (10b + c)
=> 10b + c = 150 => b và c là thương của phép chia 200 chia cho 10)
Vì b \(\le\) 9, c \(\le\) 9 => 10b + c \(\le\) 10 . 9 + 9 = 99 < 150
Không có chữ số b và c nào thỏa mãn 10b + c = 150
Trường hợp 5: a = 16, thay vào (*) => 50 . 16 = 4 . (10b + c)
=> 10b + c = 200 => b và c là thương của phép chia 200 chia cho 10)
Vì b \(\le\) 9, c \(\le\) 9 => 10b + c \(\le\) 10 . 9 + 9 = 99 < 200
Không có chữ số b và c nào thỏa mãn 10b + c = 200
Kết luận: Số tìm được là 450.
b) Nếu không biết chữ số bị xóa => chữ số bị xóa có thể là hàng trăm ; chục , đơn vị
+) Chữ số bị xóa là hàng trăm : câu a đã làm
+) chữ số bị xóa ở hàng chục:
theo bài cho abc = 9. ac
=> 100a + 10b + c = 90a + 9c
=> 10a + 10b = 8c => 5a + 5b = 4c => 4c chia hết cho 5 => c = 0 hoặc c = 5
c = 0 => a+ b = 0 Loại
c = 5 => a + b = 4 => a = 1; b = 3 hoặc a = 2 ; b = 2 hoặc a = 3; b = 1 hoặc a =4 ; b = 0
Vậy....
+) Nếu chữ số bị xóa ở hàng đơn vị:
abc = 9ab => 100a + 10b + c = 90a + 9b => 10a + b + c = 0 . Không xảy ra
Vậy không có số nào thỏa mãn
a) Gọi số cần tìm là abc.
Theo bài ra ta có: abc=bc.9
=>a.100+bc=bc.9
=>a.100=bc.9-bc
=>a.100=bc.8
=>a.25=bc.2
=>a.25 chia hết cho 2
mà (25,2)=1
=>a chia hết cho 2
Vì bc<100
=>bc.2<200
=>a.25<200
=>a<8
=>0<a<8
=>a=(1,2,3,4,5,6,7)
Vì a chia hết cho 2
=>a=2,4,6
Xét a=2=>a.25=50=bc.2=>bc=25=>abc=225
Xét a=4=>a.25=100=bc.2=>bc=50=>abc=450
Xét a=6=>a.25=150=bc.2=>bc=75=>abc=675
Vậy số cần tìm là 225,450,675
gọi số tự nhiên đó là \(\overline{a0bc}\left(a,b,c\in N\right)\)
ta có \(\overline{a0bc}=1000a+bc\)
nếu xóa số 0 thì số mới là: \(\overline{abc}\)=100a+bc
vì xóa chữ số 0 thì số đó giảm 9 lần nên ta có:
\(\frac{\overline{a0bc}}{\overline{abc}}=9\)=>\(\frac{1000a+bc}{100a+bc}=9\)=>\(1000a+bc=900a+9bc\)
=>100a=8bc
=>25a=2bc
do đó a=2 và bc=25
=>số cần tìm là 2025
Gọi số cần tìm là \(\overline{abc}\).
Ta có: \(\overline{abc}=9\times\overline{bc}\)
\(\Leftrightarrow\overline{a00}+\overline{bc}=9\times\overline{bc}\)
\(\Leftrightarrow a\times100=8\times\overline{bc}\)
\(\Leftrightarrow a\times25=2\times\overline{bc}\)
suy ra \(\overline{bc}\in\left\{25,50,75\right\}\)
Xét từng trường hợp, có các số thỏa mãn ycbt là: \(225,450,675\).
Gọi số cần tìm là \(\overline{4ab}\)
Theo bài ra ta có:
\(400+\overline{bc}=9.\overline{bc}\)
\(4.100=8.\overline{bc}\)
\(\overline{bc}=50\)
Vậy số cần tìm là 450
\(\overline{abc}=\overline{4bc}\)
Xóa chữ số 4 đi : \(\overline{4bc}=9.\overline{bc}\)
\(\Rightarrow4.100+10b+c=9\left(10b+c\right)\)
\(\Rightarrow400+10b+c=90b+9c\)
\(\Rightarrow80b+8c=400\)
\(\Rightarrow8\left(10b+c\right)=400\)
\(\Rightarrow10b+c=50\)
\(\Rightarrow\left\{{}\begin{matrix}b=5\\c=0\end{matrix}\right.\)
Vậy số ban đầu là 450
Theo bài ra,ta có:
abc=9*bc
100*a+bc=8*bc+bc
=>100*a=8*bc
=>25*a=2*bc
=>Nếu a=1(loại)
a=2=>bc=25
a=3(loại)
a=4=>bc=50
a=5(loại)
a=6.=>bc=75
Cứ thử vậy đến a=9(ko còn th nào thỏa mãn nx)
Vậy....
Theo bài ra,ta có:
abc=9*bc
=>100*a+bc=8*bc+bc
=>100*a=8*bc
=>25*a=2*bc
Vì 2*bc luôn chia hết cho 2.
Mà 25 lẻ
=>a chănx
Mà a là chữ số đứng đầu
=>a=2;4;6 hoặc 8
Thử lại nx là đc
Gọi các số cần tìm là a0bc và nếu gạch chữ số 0 đó đi thì số đó giảm đi 9 lần thì số đó là abc
Ta có:
a0bc=9.abc
=>1000a+10b+c=900a+90b+9c
=>100a=80b+8c
Nếu a=1 thì b=1 =>8c=20 =>c ko thỏa mãn
Nếu a=2 thì b=2 =>8c=40 =>c=5
Nếu a=3 thì b=3 =>8c=60=>c ko thỏa mãn
(Bạn thử tiếp nhá)
Ta có ab x 9 = abc
=> ab x 9 = ab x 10 + c
=> ab = c
=> không tồn tại số đó vì c là chữ số.
xóa đi 9 ở hàng trăm là bớt đi 9 trăm. 9 trăm là 8/9 của số tự nhiên kia.
Gọi số đó là : abc ( a khác 0 a , b , c < 10 )
Ta có :
abc = ab x 5
a x 100 + bc = bc x 4 + bc
a x 100 = bc x 4
25 x a = bc
Từ ( 1 ) ta thấy : a = 1 ; bc = 25 thì số đó là 125
Từ ( 1 ) ta có : 50 x a = 2 x bc x a = 2 ; b = 50 thì số đó là 250
Từ ( 1 ) ta có : 75 x a = 3 x bc x a = 3 ; b = 75 thì số đó là 375
Đáp số abc là : 125 ;250 ; 375
Gọi số cần tìm là abc (a khác 0; a,b,c là các chữ số)
Ta có:
bc.9 = abc
=> bc.9 = 100a + bc
=> bc.9 - bc = 100a
=> bc.8 = 100a
=> bc.2 = 25a (1)
\(\Rightarrow bc.2⋮25\)
Mà (2;25)=1 \(\Rightarrow bc⋮25\)
\(\Rightarrow bc\in\left\{25;50;75\right\}\)
+ Với bc = 25, thay vào (1) => a = 25.2:25 = 2
+ Với bc = 50, thay vào (1) => a = 50.2:25 = 4
+ Với bc = 75, thay vào (1) => a = 75.2:25 = 6
Vậy số cần tìm là 225; 450; 675