Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số cần tìm là a;b
-Ta có:BCNN (a;b)=ab
=>ƯCLN(a;b)=ab;BCNN(a,b)=4320:360=12
-Gọi a=12m
b=12n(ƯCLN(m;n)=1
=>ab=12m.12n=4320
=>144mn=4320
=>mn=30
Ta tìm được (m;n)=(1;30) (2;15) (3;10) (5;6) (6;5) (10;3) (15;2) (30;1)
Lấy m;n nhân với 12,ta tim được (a;b)=(12;360) (14;180) (36;120) (60;72) (72;60) (120;36) (180;14) (360;12)
Vì ƯCLN (a,b).BCNN (a,b)=a.b nên ƯCLN (a,b) bằng:4320:360=12
= >ƯCLN (a,b)=12
+)Ta có ƯCLN (a,b)=12=>a chia hết cho 12,b chia hết cho 12
=> a=12m,b=12n và (m,n)=1
=> Có: (12m).(12n)=4320
144.mn=4320
mn=4320:144
mn=30
Vì (m,n)=1 nên ta tìm được (m,n)=(1;30) (30;1) (2;15) (15;2) (3;10) (10;3) (5;6) (6;5)
Ta lấy m,n nhân với 12 được:a,b=(12;360) (360;12) (24;180) (180;24) (36;120) (120;36) (60;72) (72;60)
Gọi hai số cần tìm là a;b
-Ta có:BCNN (a;b)=ab
=>ƯCLN(a;b)=ab;BCNN(a,b)=4320:360=12
-Gọi a=12m
b=12n(ƯCLN(m;n)=1
=>ab=12m.12n=4320
=>144mn=4320
=>mn=30
Ta tìm được (m;n)=(1;30) (2;15) (3;10) (5;6) (6;5) (10;3) (15;2) (30;1)
Lấy m;n nhân với 12,ta tim được (a;b)=(12;360) (14;180) (36;120) (60;72) (72;60) (120;36) (180;14) (360;12)
a) Giả sử A \(\le\)B
Đặt: A = 45 x A', B = 45. B' (A', B' \(\inℕ^∗\),\(ƯCLN\left(A',B'\right)=1\), A'\(\le\)B)
\(\Rightarrow\)45 x A' x 45 x B' = 24300
A' x B' = 24300 : 452 = 12
Ta có: 12 = 1 x 12 = 3 x 4
\(\Rightarrow\)Ta có các trường hợp:
- Nếu A' = 1, B' = 12 \(\Rightarrow\)A = 45; B = 360
- Nếu A' = 3, B' = 4 \(\Rightarrow\)A = 135, B = 180
Theo công thức ta có:
a.b=BCNN(a,b).UCLN(a,b)=360
=> UCLN(a,b)=6
Đặt: a=6m; b=6n
=> mn=10=>m;n E {(1;10);(2;5);(5;2);(10;1)}
=> a;b E {(6;60);(12;30);(30;12);(60;6)}
b, tương tự cách làm trên
a) a.b=360,BCNN(a,b)=60
Ta có:ƯCLN(a,b).BCNN(a,b)=a.b
ƯCLN(a,b).60=360
ƯCLN(a.b)=6
Suy ra a=6m,b=6n với ƯCLN(m,n)=1
thay a=6m,b=6n vào a.b=360 ta được
6m.6n=360
36mn=360
mn=10
m | 5 | 1 | 2 | 10 |
n | 2 | 10 | 5 | 2 |
do đó
a | 30 | 6 | 12 | 60 |
b | 12 | 60 | 30 | 6 |
(câu b gần giống )
a) Vì UCLN(a,b)=6 nên a=6m b=6n (với m,n thuộc N; UCLN(m,n)=1) (1)
suy ra a+b=6m+6n=6(m+n)=84
suy ra m+n=84:6=14 (2)
các cặp (m,n) thoả mãn là : (1;13) (13;1) (3;11) (11;3) (5;9) (9;5)
các cặp (a,b) thoả mãn là : (6;78) (78;6) (18;66) (66;18) (30; 54) (54;30)
a) Vì BCNN (a,b)=60; mà a.b =360
=> ab:BCNN (a,b)= UWCLN (a,b)=360:60=6
Vì UWCLN (a,b)=6
=> a=6m;b=6n mà ƯCLN (m,n)=1
=>ab=6m.6n=36.(m.n)=360
= mn=360:36=10
Gỉa sử a>b
=>m>n, mà mn=10,ƯCLN (m,n)=1
Lập bảng giá trị :
m 10 5
n 1 2
a=6m 60 30
b=6n 6 12
Vậy nếu a=60 thì b=6
nếu a=30 thì b=12
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)