Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì A chia 5 dư 3 nên A có tận cùng là 3 hoặc 8.
A chia cho 11 dư 6 nên A + 5 chia hết cho 11.
mà A có tận cùng là 3 hoặc 8 nên A + 5 cũng có tận cùng là 3 hoặc 8.
Nếu A+5 là số có hai chữ số mà chia hết cho 11 suy ra A +5 bằng 33 hoặc 88 - loại.
Vậy A+5 có 3 chữ số có tận cùng là 3 hoặc 8; nếu chữ số hàng trăm là 1 suy ra A+5 là 143 hoặc 198 (vì A+5 chia hết cho 11) thử lại ta thấy 198 thỏa mãn nên A là 193
a chia 3;5;7 dư 2;4;6
=>a+1 chia hết cho 3;5;7
mà a nhỏ nhất
=>a+1 thuộc BCNN(3;5;7)=3.5.7=105
=>a=104
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)