K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2016

Để A : B thì 4xn+1y: 3x3yn-1

=> n+1>=3 và 2>=n-1

  n>=2            3>=n

nên 2<=n<=3 mà n lẻ nên n=3

Vậy để A : B thì n=3

26 tháng 8 2016

khó vậy

26 tháng 8 2016

Để A chia hết cho B thì 

\(\hept{\begin{cases}2\le n-1\\4\ge n\end{cases}}\)

<=> \(3\le n\le4\)

Vậy n cần tìm là 3

27 tháng 8 2016

Để A : B thì (7xn-1y5-5x3y4): x2yn => 7xn-1y: x2yn và 5x3y4:x2yn

=>

*)n-1>=2; 5>=n; 

nên n>=3; 5>=n hay 3<=n<=5(1)

*)4>=n(2)

Từ (1);(2) => 3<=n<=4 mà n lẻ nên n=3

Vậy để A : B thì n=3

19 tháng 10 2018

Ta có : 

\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)

Để A chia hết cho B thì tất cả số mũ của phần biến phải không âm 

\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)

\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)

\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

Từ những dữ kiện trên \(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)

Vậy \(n=4\)

Chúc bạn học tốt ~ 

19 tháng 10 2018

\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)

Để \(\left(3x^{n-1}y^6-5x^{n+1}y^4\right)⋮2x^3y^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)

\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)

\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)

\(\left(7x^{n-1}y^5-5x^3y^4\right):5x^2y^n=\frac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)

Để \(\left(7x^{n-1}y^5-5x^3y^4\right)⋮5x^2y^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(n-3\ge0\)\(\Leftrightarrow\)\(n\ge3\)

\(5-n\ge0\)\(\Leftrightarrow\)\(n\le5\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(\Rightarrow\)\(3\le n\le4\)\(\Rightarrow\)\(n\in\left\{3;4\right\}\)

Chúc bạn học tốt ~ 

18 tháng 12 2016

4

19 tháng 12 2016

giải thích đi bn

a: Để A chia hết cho B thì \(\left\{{}\begin{matrix}n+1-5>0\\2-4>0\left(loại\right)\end{matrix}\right.\Leftrightarrow n\in\varnothing\)

b: \(\dfrac{A}{B}=\dfrac{5x^3y^{n+2}-3x^2y^2}{-3x^{n-1}y^n}=-\dfrac{5}{3}x^{4-n}y^2+x^{3-n}y^{2-n}\)

Để A chia hết cho B thì \(\left\{{}\begin{matrix}4-n>=0\\3-n>=0\\2-n>=0\end{matrix}\right.\Leftrightarrow n< =2\)

c: \(\dfrac{A}{B}=\dfrac{3x^6\left(2x+5\right)^{n+3}}{2x^2\left(2x+5\right)^{n-1}}=\dfrac{3}{2}x^4\left(2x+5\right)^{n+3-n+1}=\dfrac{3}{2}x^4\left(2x+5\right)^4\)

=>Với mọi N thì A chia hết cho B

30 tháng 7 2016

\(\left(x+y\right)^3-x^3y^3=\left(x+y\right)^3-\left(xy\right)^3\)

=\(\left(x+y+xy\right)\left[\left(x+y\right)^2-xy\left(x+y\right)+x^2+y^2\right]\)

Câu 1: 

\(\dfrac{A}{B}=\dfrac{4x^{n+1}y^2}{3x^3y^{n-1}}=\dfrac{4}{3}x^{n-2}y^{2-n+1}=\dfrac{4}{3}x^{n-2}y^{3-n}\)

Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-2>=0\\3-n>=0\end{matrix}\right.\Leftrightarrow2\le n\le3\)

Bài 2: 

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)\left(x-y\right)+3\left(x+y\right)^2}{x+y}\)

\(=x^2-xy+y^2-2\left(x-y\right)+3\left(x+y\right)\)

\(=x^2-xy+y^2-2x+2y+3x+3y\)

\(=x^2-xy+y^2+x+5y\)