K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

\(\left(x+2\right)^2-6\left(y-1\right)^2+xy=24\Leftrightarrow x^2+4x-6y^2+12y+xy=26\)

\(\Leftrightarrow\left(x^2-2xy+4x\right)+\left(3xy-6y^2+12y\right)=26\Leftrightarrow x\left(x-2y+4\right)+3y\left(x-2x+4\right)=26\)

\(\Leftrightarrow\left(x-2y+4\right)\left(x+3y\right)=26\)

Vì x,y nguyên dương nên có các TH sau:

\(\hept{\begin{cases}x+3y=1\\x-2y+4=26\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\x-2y=22\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{68}{5}\\y=\frac{-21}{5}\end{cases}\left(loai\right)}}\)

\(\hept{\begin{cases}x+3y=26\\x-2y+4=1\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=26\\x-2y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{43}{5}\\y=\frac{29}{5}\end{cases}\left(loai\right)}}\)

\(\hept{\begin{cases}x+3y=2\\x-2y+4=13\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=2\\x-2y=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{31}{5}\\y=\frac{-7}{5}\end{cases}\left(loai\right)}}\)

\(\hept{\begin{cases}x+3y=13\\x-2y+4=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=13\\x-2y=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}\left(chon\right)}}}\)

Vậy (x;y)=(4,3)

20 tháng 3 2020

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

20 tháng 4 2020

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}

2 tháng 10 2020

\(pt=\left(x^3-4x^2+4x\right)+\left(y^3-4y^2+4y\right)+\left(8x^2+8y^2-16xy\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2+y\left(y-2\right)^2+8\left(x-y\right)^2=0\left(1\right)\)

Do \(x\left(x-2\right)^2\ge0,y\left(y-2\right)^2\ge0,8\left(x-y\right)^2\ge0\left(2\right)\)

Từ (1) và (2) =>x=y=2

18 tháng 12 2016

Khai triển: \(\left(x+y\right)^2+\left(xy-1\right)\left(x+y\right)+\left(xy-5\right)=0\).

Ta coi như là một phương trình bậc hai ẩn \(x+y\).

\(\Delta=\left(xy-1\right)^2-4\left(xy-5\right)=\left(xy-3\right)^2+12\)

Để phương trình có nghiệm nguyên thì \(\Delta\) chính phương, cộng với \(\left(xy-3\right)^2\) đã là một số chính phương.

Nghĩa là ta cần tìm 2 số chính phương hơn kém nhau 12 đơn vị. Đó là số 4 và 16.

Tức là \(\left(xy-3\right)^2=4\) (số chính phương nhỏ hơn)

Hay \(xy=5\) hoặc \(xy=1\).

Thử lại thì \(x=y=1\) hoặc \(x=y=-1\)

30 tháng 5 2017

\(A=x^2+y^2+z^2-\left(xy+xy+yz\right)\)

mà \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2zy\\z^2+x^2\ge2xz\end{cases}}\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

nên \(A\le x^2+y^2+z^2-\left(x^2+y^2+z^2\right)=0\)

\(A_{Max}=0\)dấu = sảy ra khi \(\left(x,y,z\right)\)là hoán vị của \(\left(1,0,0\right)\)

7 tháng 11 2018

\(a)\)\(x+xy+y=-6\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)

Lập bảng xét TH ra là xong 

\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

Xin thêm 1 slot đi hok về làm cho -,- 

7 tháng 11 2018

\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel ) 

Ta có : 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :)) 

Chúc bạn học tốt ~