K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Sửa đề tìm số hữu tỉ x,y sao cho xy = x:y = x - y (y khác 0)

Từ x - y = xy => x = xy + y = y(x + 1) => x : y = x + 1 (vì y \(\ne\)0)

Từ x : y = x - y => x + 1 = x - y => y = -1

Thay y = -1 vào x - y = xy => x - (-1) = x(-1) => x + 1 = -x => 2x = -1 => x = \(-\frac{1}{2}\)

Vậy x = \(-\frac{1}{2}\), y = -1

9 tháng 10 2016

Vì: \(\left(x-12+y\right)^{200}\ge0;\left(x-4-y\right)^{200}\ge0\)

=> \(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}\le0\)

\(\Leftrightarrow\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)

\(\Leftrightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)\(\Leftrightarrow\begin{cases}x+y=12\\x-y=4\end{cases}\)\(\Leftrightarrow\begin{cases}x=8\\y=4\end{cases}\)

29 tháng 7 2016

\(x+y+x.y=3\)

=>\(x+y+x.y+1=4\)

=>\(\left(x+x.y\right)+\left(y+1\right)=4\)

=>\(x\left(1+y\right)+\left(y+1\right)=4\)

=>\(\left(x+1\right)\left(y+1\right)=4\)

Ta có bảng sau:

x+1-4-2-112

4

y+1-1-2-442

1

x-5-3-201

3

y-2-3-531

0

Vậy có 6 cặp số nguyên thỏa mãn là ...

29 tháng 7 2016

Vì 0+3+0x3=3

Nên x=0

       y=3

Chúc bạn học giỏi nha!!!

29 tháng 9 2016

Do 3x+1 \(⋮\)y và 3y+1\(⋮\)
nên (3x+1)(3y+1) \(⋮\)xy 
=>9xy+3x+3y+1 \(⋮\)xy 
mà 9xy \(⋮\)xy 
=>3x+3y+1 \(⋮\)xy 
=>\(\frac{3x}{y}\) + 3 +y\(\frac{1}{y}\) chia hết cho x 
Do vai trò của x,y như nhau nên giả sử 
=>\(\frac{x}{y}\le1\)
=>\(\frac{3x}{y}\le3\)
y>1 =>\(\frac{1}{y}< 1\)
=>\(\frac{3x}{y}+3+\frac{1}{y}< 7\)
=>1<x <7 
=>x = 2,3,4,5,6 
Thay x vào 3x+1\(⋮\) y và 3y+1\(⋮\) x

29 tháng 9 2016

Xl bn nha

Chỗ 

Thay x vào 3x+1 chia het cho y va 3y+1 chia het cho x
sử lại thành như thế này nha
Thay x vao 3x+1\(⋮y\) (*)
Từ (*)=> \(y\in\left\{7;10;13;16;19\right\}\)
Vậy .....
 
 
23 tháng 12 2016

a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)

\(\Rightarrow3⋮a+1\)

\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

b) Phần 1

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x-4xy+2y-1=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Lập bảng xét Ư(-1)={1;-1}

Phần 2:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)

+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P có giá trị nguyên 

ta có (x+1)(x+3)=(x+8)(x-9)=y

<=> \(\frac{x+1}{x-9}\)\(\frac{x+8}{x+3}\)

<=> \(\frac{x-9+10}{x-9}\) = \(\frac{x+3+5}{x+3}\)

<=>\(\frac{10}{x-9}\)  =  \(\frac{10}{2x+6}\)

<=> x-9=2x+6

<=> 3x=15

<=> x=5

lúc đó 6.8.13.(-4)=ymà y2\(\ge\)0

VẬy không có giá trị nào thỏa mãn x,y