Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
$(x+1)+(x+2)+...+(x+100)=5750$
$(x+x+....+x)+(1+2+....+100)=5750$
Số lần xuất hiện của $x$:
$(100-1):1+1=100$
Suy ra:
$100x+(1+2+3+....+100)=5750$
$100x+100.101:2=5750$
$100x+5050=5750$
$100x=700$
$x=700:100$
$x=7$
b/
$x^2y-x+xy=6$
$x(xy-1+y)=6$
Do $x,y$ nguyên nên $xy-1+y$ cũng là số nguyên. Mà tích $x(xy-1+y)=6$ nên ta có các TH sau:
TH1: $x=1, xy-1+y=6$
$\Rightarrow y-1+y=6\Rightarrow y=\frac{7}{2}$ (loại)
TH2: $x=-1, xy-1+y=-6$
$\Rightarrow -y-1+y=-6\Rightarrow -1=-6$ (vô lý - loại)
TH3: $x=2, xy-1+y=3$
$\Rightarrow 2y-1+y=3\Rightarrow 3y=4\Rightarrow y=\frac{4}{3}$ (loại)
TH4: $x=-2, xy-1+y=-3$
$\Rightarrow -2y-1+y=-3$
$\Rightarrow -y-1=-3\Rightarrow y=2$ (tm)
TH5: $x=3, xy-1+y=2\Rightarrow 3y-1+y=2$
$\Rightarrow 4y=3\Rightarrow y=\frac{3}{4}$ (loại)
TH6: $x=-3, xy-1+y=-2\Rightarrow -3y-1+y=-2$
$\Rightarrow -2y=-1\Rightarrow y=\frac{1}{2}$ (loại)
TH7: $x=6, xy-1+y=1$
$\Rightarrow 6y-1+y=1\Rightarrow 7y=2\Rightarrow y=\frac{2}{7}$ (loại)
TH8: $x=-6, xy-1+y=-1$
$\Rightarrow -6y-1+y=-1$
$\Rightarrow -5y=0\Rightarrow y=0$ (tm)
Bài 1: Ta có 5x+7=5(x-2)+8
Để 5x+7 chia hết cho x-2 thì 5(x-2) +8 chia hết cho x-2
=> 8 chia hết cho x-2
x nguyên => x-2 nguyên => x-2 thuộc Ư (8)={-8;-4;-2;-1;1;2;4;8}
ta có bảng
x-2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
x | -6 | -2 | 0 | 1 | 3 | 4 | 6 | 10 |
Bài 2:
a) xy+x=-15
<=> x(y+1)=-15
=> x, y+1 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng
x | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y+1 | 1 | 3 | 5 | 15 | -15 | -5 | -3 | -1 |
y | 0 | 2 | 4 | 14 | -16 | -6 | -4 | -2 |
b) xy+2-y=9
<=> y(x-1)=7
=> y, x-1 thuộc Ư (7)={-7;-1;1;7}
Ta có bảng
y | -7 | -1 | 1 | 7 |
x-1 | -1 | -7 | 7 | 1 |
x | 0 | -6 | 6 | 2 |
c) xy+2x+2y=-17
<=> x(y+2)+2(y+2)=-15
<=> (x+2)(y+2)=-15
<=> x+2; y+2 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng
x+2 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
x | -17 | -7 | -5 | -3 | -1 | 1 | 3 | 13 |
y+2 | 1 | 3 | 5 | 15 | -15 | -5 | -3 | -1 |
y | -1 | 1 | 3 | 13 | -17 | -7 | -5 | -3 |
a)Ta có :\(xy-2x-3y=9\)
\(x.\left(y-2\right)\)-\(3.\left(y-2\right)\)\(-6=9\)
\(\left(x-3\right)\)\(.\left(y-2\right)\)\(=15\)
đến đây cậu tự làm tiếp nhé
x-3 ,y-2 Ư(15)=1;3;5;15
x-3 | 1 | 15 | -1 | -15 | 3 | 5 | -3 | -5 |
y-2 | 15 | 1 | -15 | -1 | 5 | 3 | -5 | -3 |
x | 4 | 18 | 2 | -12 | 6 | 8 | 0 | -2 |
y | 17 | 3 | -13 | 1 | 7 | 5 | -3 | -1 |
\(\left(x;y\right)\) \(\left(4;17\right),\left(18;3\right),\left(2;-13\right),\left(-12;1\right),\left(6;7\right),\left(8;5\right),\)\(\left(0;-3\right),\left(-2;-1\right)\)
a/ \(\frac{x}{3}-\frac{5}{y}=\frac{5}{6}\Leftrightarrow\frac{xy-15}{3y}=\frac{5}{6}\Leftrightarrow2xy-30=5y\)\(\Leftrightarrow y\left(2x-5\right)=30\)
Ta phải phân tích số 30 thành tích hai số y là số chẵn vì 2x - 5 là số lẻ. Có ba trường hợp
- trường hợp 1 : \(\hept{\begin{cases}y=30\\2x-5=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=30\end{cases}}}\)
-Trường hợp 2 : \(\hept{\begin{cases}y=10\\2x-5=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=10\end{cases}}}\)
- Trường hợp 3 : \(\hept{\begin{cases}y=6\\2x-5=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=6\end{cases}}}\)
b/ \(xy-2x+y=9\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=7\) \(\Leftrightarrow\left(y-2\right)\left(x+1\right)=7\)
- T/hợp 1 \(\hept{\begin{cases}x+1=1\\y-2=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=9\end{cases}}}\) - T/hợp 2 :\(\hept{\begin{cases}x+1=7\\y-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}}\)
- T/hợp 3 : \(\hept{\begin{cases}x+1=-1\\y-2=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}}\) - T/hợp 4: \(\hept{\begin{cases}x+1=-7\\y-2=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)
c/ \(xy=x+y\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
- T/hợp 1: \(\hept{\begin{cases}x-1=1\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\) - T/hợp 2 : \(\hept{\begin{cases}x-1=-1\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
x + xy + y = 9
<=> x + xy + y + 1 = 9 + 1
<=> x(y + 1) + (y + 1) = 10
<=> (x + 1)(y + 1) = 10
Ta có bảng sau
Vậy các cặp (x;y) thõa mãn là (0;-11) ; (-2;9) ; (1;-6) ; (-3;4) ; (4;-3) ; (-6;1) ; (9;-2) ; (-11;0)
May ngu
Tao lv 1211 lc 100k ma moi v111
TaoTM
may la hinata
T
XIn loi ban minh len con dong kinh