K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

x + xy + y = 9

<=> x + xy + y + 1 = 9 + 1

<=> x(y + 1) + (y + 1) = 10

<=> (x + 1)(y + 1) = 10

Ta có bảng sau

x + 11-12-25-510-10
y + 1-1010-55-22-11
x0-21-34-69-11
y-119-64-31-20
         

Vậy các cặp (x;y) thõa mãn là (0;-11) ; (-2;9) ; (1;-6) ; (-3;4) ; (4;-3) ; (-6;1) ; (9;-2) ; (-11;0)

May ngu 

Tao lv 1211 lc 100k ma moi v111

TaoTM 

may la hinata 

T

XIn loi ban minh len con dong kinh

AH
Akai Haruma
Giáo viên
25 tháng 8 2024

a/

$(x+1)+(x+2)+...+(x+100)=5750$

$(x+x+....+x)+(1+2+....+100)=5750$
Số lần xuất hiện của $x$:

$(100-1):1+1=100$

Suy ra:

$100x+(1+2+3+....+100)=5750$

$100x+100.101:2=5750$

$100x+5050=5750$

$100x=700$

$x=700:100$

$x=7$

AH
Akai Haruma
Giáo viên
25 tháng 8 2024

b/

$x^2y-x+xy=6$

$x(xy-1+y)=6$

Do $x,y$ nguyên nên $xy-1+y$ cũng là số nguyên. Mà tích $x(xy-1+y)=6$ nên ta có các TH sau:

TH1: $x=1, xy-1+y=6$

$\Rightarrow y-1+y=6\Rightarrow y=\frac{7}{2}$ (loại) 

TH2: $x=-1, xy-1+y=-6$

$\Rightarrow -y-1+y=-6\Rightarrow -1=-6$ (vô lý - loại) 

TH3: $x=2, xy-1+y=3$

$\Rightarrow 2y-1+y=3\Rightarrow 3y=4\Rightarrow y=\frac{4}{3}$ (loại) 

TH4: $x=-2, xy-1+y=-3$

$\Rightarrow -2y-1+y=-3$

$\Rightarrow -y-1=-3\Rightarrow y=2$ (tm) 

TH5: $x=3, xy-1+y=2\Rightarrow 3y-1+y=2$

$\Rightarrow 4y=3\Rightarrow y=\frac{3}{4}$ (loại) 

TH6: $x=-3, xy-1+y=-2\Rightarrow -3y-1+y=-2$

$\Rightarrow -2y=-1\Rightarrow y=\frac{1}{2}$ (loại) 

TH7: $x=6, xy-1+y=1$

$\Rightarrow 6y-1+y=1\Rightarrow 7y=2\Rightarrow y=\frac{2}{7}$ (loại) 

TH8: $x=-6, xy-1+y=-1$

$\Rightarrow -6y-1+y=-1$

$\Rightarrow -5y=0\Rightarrow y=0$ (tm)

 

12 tháng 3 2020

Bài 1: Ta có 5x+7=5(x-2)+8

Để 5x+7 chia hết cho x-2 thì 5(x-2) +8 chia hết cho x-2

=> 8 chia hết cho x-2

x nguyên => x-2 nguyên => x-2 thuộc Ư (8)={-8;-4;-2;-1;1;2;4;8}
ta có bảng

x-2-8-4-2-11248
x-6-20134610

Bài 2:

a) xy+x=-15

<=> x(y+1)=-15

=> x, y+1 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}

Ta có bảng

x-15-5-3-113515
y+113515-15-5-3-1
y02414-16-6-4-2
12 tháng 3 2020

b) xy+2-y=9

<=> y(x-1)=7

=> y, x-1 thuộc Ư (7)={-7;-1;1;7}
Ta có bảng

y-7-117
x-1-1-771
x0-662

c) xy+2x+2y=-17

<=> x(y+2)+2(y+2)=-15

<=> (x+2)(y+2)=-15

<=> x+2; y+2 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng

x+2-15-5-3-113515
x-17-7-5-3-11313
y+213515-15-5-3-1
y-11313-17-7-5-3
16 tháng 2 2020

a)Ta có :\(xy-2x-3y=9\)

\(x.\left(y-2\right)\)-\(3.\left(y-2\right)\)\(-6=9\)

\(\left(x-3\right)\)\(.\left(y-2\right)\)\(=15\)

đến đây cậu tự làm tiếp nhé

16 tháng 2 2020

\implies \,x-3 ,y-2 \inƯ(15)=\{\,\pm \,1;\pm \,3;\pm \,5;\pm \,15\}\,

x-3115-1-1535-3-5
y-2151-15-153-5-3
x4182-12680-2
y173-13175-3-1

\implies \,\(\left(x;y\right)\)\in \{\,\(\left(4;17\right),\left(18;3\right),\left(2;-13\right),\left(-12;1\right),\left(6;7\right),\left(8;5\right),\)\(\left(0;-3\right),\left(-2;-1\right)\)\}\,

20 tháng 5 2019

a/   \(\frac{x}{3}-\frac{5}{y}=\frac{5}{6}\Leftrightarrow\frac{xy-15}{3y}=\frac{5}{6}\Leftrightarrow2xy-30=5y\)\(\Leftrightarrow y\left(2x-5\right)=30\)  

Ta phải phân tích số 30 thành tích hai số y là số chẵn vì  2x - 5 là số lẻ. Có ba trường hợp 

- trường hợp 1 : \(\hept{\begin{cases}y=30\\2x-5=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=30\end{cases}}}\)  

-Trường hợp 2 :   \(\hept{\begin{cases}y=10\\2x-5=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=10\end{cases}}}\) 

- Trường hợp 3 : \(\hept{\begin{cases}y=6\\2x-5=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=6\end{cases}}}\)

b/            \(xy-2x+y=9\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=7\) \(\Leftrightarrow\left(y-2\right)\left(x+1\right)=7\)

- T/hợp 1 \(\hept{\begin{cases}x+1=1\\y-2=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=9\end{cases}}}\)      - T/hợp 2 :\(\hept{\begin{cases}x+1=7\\y-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}}\)

- T/hợp 3 : \(\hept{\begin{cases}x+1=-1\\y-2=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}}\)  - T/hợp 4: \(\hept{\begin{cases}x+1=-7\\y-2=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)  

c/      \(xy=x+y\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\) 

- T/hợp 1: \(\hept{\begin{cases}x-1=1\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)    - T/hợp 2 \(\hept{\begin{cases}x-1=-1\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)