K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

\(2)\) Ta có : 

\(n^{200}< 3^{400}\)

\(\Leftrightarrow\)\(n^{200}< 3^{2.200}\)

\(\Leftrightarrow\)\(n^{200}< \left(3^2\right)^{200}\)

\(\Leftrightarrow\)\(n^{200}< 9^{200}\)

\(n\) lớn nhất nên \(n=8\)

Vậy \(n=8\)

Chúc bạn học tốt ~ 

15 tháng 6 2018

1) (2x-5)2008+(3y+4)2010<=0

=>2x-5=0 và 3y+4=0

=>x=5/2 và y=-4/3

2)n200<3400

=>n200<9200

=>n<9

Vậy số nguyên n lớn nhất là 8

7 tháng 5 2016

x=2010

7 tháng 5 2016

Chia 4 khoảng trên trục số rồi giải

16 tháng 8 2020

Bài 1:

a) \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}\ge0\left(\forall x\right)\\\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(x-\frac{2}{5}\right)^{2010}+\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall x,y\right)\)

Kết hợp với đề bài, dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}=0\\\left(y+\frac{3}{7}\right)^{468}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=-\frac{3}{7}\end{cases}}\)

b) \(\hept{\begin{cases}\left(x+0,7\right)^{84}\ge0\left(\forall x\right)\\\left(y-6,3\right)^{262}\ge0\left(\forall y\right)\end{cases}\Rightarrow}\left(x+0,7\right)^{84}+\left(y-6,3\right)^{262}\ge0\left(\forall x,y\right)\)

Kết hợp với đề bài, dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x+0,7\right)^{84}=0\\\left(y-6,3\right)^{262}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,7\\y=6,3\end{cases}}\)

c) \(\hept{\begin{cases}\left(x-5\right)^{88}\ge0\left(\forall x\right)\\\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\end{cases}\Rightarrow}\left(x-5\right)^{88}+\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\)

Kết hợp với đề bài, dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-5\right)^{88}=0\\\left(x+y+3\right)^{496}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=-8\end{cases}}\)

16 tháng 8 2020

Bài 2:

Theo giả thiết ta có thể suy ra: \(x>y\)

Ta có: \(2^x-2^y=224\)

\(\Leftrightarrow2^y\left(2^{x-y}-1\right)=224=32.7=2^5.7\)

Mà \(2^{x-y}-1\) luôn lẻ với mọi x,y nguyên

=> \(\hept{\begin{cases}2^{x-y}-1=7\\2^y=2^5\end{cases}\Leftrightarrow}\hept{\begin{cases}2^{x-y}=8=2^3\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=5\end{cases}}\)

2 tháng 1 2019

\(\hept{\begin{cases}\left|y+2011\right|+30\ge30\\\frac{2010}{\left(2x+6\right)^2+67}\le30\end{cases}\text{dấu = xảy ra khi }}\hept{\begin{cases}\left|y+2011\right|=0\\\left(2x+6\right)=0\end{cases}\Rightarrow\hept{\begin{cases}y=-2011\\x=-3\end{cases}}}\)

làm tắt, cố hiểu nhoa :D!!

16 tháng 11 2017

Vì \(\hept{\begin{cases}\left(2x-1\right)^{2010}\ge0\\\left(y-\frac{2}{5}\right)^{2010}\ge0\\\left|x+y-z\right|\ge0\end{cases}\forall x,y,z}\)

\(\Rightarrow\left(2x-1\right)^{2010}+\left(y-\frac{2}{5}\right)^{2010}+\left|x+y-z\right|\ge0\)

Mà \(\left(2x-1\right)^{2010}+\left(y-\frac{2}{5}\right)^{2010}+\left|x+y-z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^{2010}=0\\\left(y-\frac{2}{5}\right)^{2010}=0\\\left|x+y-z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

Vậy...