Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
=)\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
=)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
Suy ra \(\frac{1}{5}-\frac{1}{x+3}\)= \(\frac{303}{1540}\)=)\(\frac{1}{x+3}=\frac{1}{305}\)=) \(x+3=305\)=) \(x=302\)
Tìm x:
1+\(\frac{1}{3}\)+\(\frac{1}{6}\)+....+\(\frac{2}{x.\left(x+1\right)}\)=\(1\frac{1991}{1993}\)
\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}=1+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}\)
\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{x+1}\right)=1+1-\frac{2}{x+1}=2-\frac{2}{x+1}\)
Do đó ta có phương trình:
\(2-\frac{2}{x+1}=1\frac{1991}{1993}\)
<=> \(\frac{2}{1993}=\frac{2}{x+1}\)
<=> x + 1 = 1993
<=> x = 1992
Câu 1:
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{1991}{1993}.\)
\(\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{x.\left(x+1\right):2}=\frac{1991}{1993}\)
\(\frac{1}{2.3}.2+\frac{1}{3.4}.2+\frac{1}{4.5}.2+...+\frac{1}{x.\left(x+1\right)}.2=\frac{1991}{1993}\)
\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1991}{1993}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1991}{3986}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1991}{3986}\)
...
e tự tính nốt nha
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1991}{1993}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1991}{1993}\div2\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1991}{3986}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1991}{3986}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1991}{3986}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1991}{3986}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{1993}\)
\(\Leftrightarrow x+1=1993\)
\(\Leftrightarrow x=1993-1\)
\(\Leftrightarrow x=1992\)
Vậy x = 1992
\(1+\frac{1}{3}+\frac{1}{6}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\frac{2}{6}+\frac{2}{12}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\left[2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)\right]=4\)
\(\Leftrightarrow1+2\left(\frac{1}{2}-\frac{1}{\left(x+1\right)}\right)=4\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{4-1}{2}=\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2}-\frac{3}{2}=-1\)
\(\Leftrightarrow x=-1+1=-2\)
Vậy x = -2
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{2.6}+\frac{2}{2.10}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)
\(\Leftrightarrow2\left(1-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=1\frac{1991}{1993}\div2\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=\frac{1992}{1993}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=1-\frac{1992}{1993}=\frac{1}{1993}\)
\(\Leftrightarrow x+1=1993\)
\(\Leftrightarrow x=1992\)
a)\(\frac{1}{5.8}+\frac{1}{8.11}+.....+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-...-\frac{1}{x+3}=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{101}{1540}=\frac{207}{1540}\)
\(\frac{1}{x+3}=\frac{207}{1540}\Leftrightarrow207\left(x+3\right)=1540\)
\(207x+621=1540\)
\(207x=1540-621=919\Rightarrow x=\frac{919}{207}\)
=> 1/2+1/6+1/12+1/20+....+1/x.(x+1) = 1992/1993
=> 1/2+1/2.3+1/3.4+1/4.5+.....+1/x.(x+1) = 1992/1993
=> 1/2+1/2-1/3+1/3-1/4+1/4-1/5+.....+1/x-1/x+1 = 1992/1993
=> 1 - 1/x+1 = 1992/1993
=> x/x+1 = 1992/1993
=> x = 1992
Vậy x = 1992
Tk mk nha
\(\Rightarrow\frac{2}{2}+\frac{2}{2.3}+\frac{2}{2.6}+...+\frac{2}{x\left(x+1\right)}=\frac{3984}{1993}\)
\(\Rightarrow2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{3984}{1993}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3984}{1993}:2\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{1992}{1993}\)
\(\Rightarrow\frac{x}{x+1}=\frac{1992}{1993}\)
=>x=1992