K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

ta thấy 5y2 có tận cùng = 0 hoặc 5 

nên 6x2 = 74 - 5y2

\(\Rightarrow\) 6x2 có tận cùng = 4 hoặc 9 

ta lại có 6x2 có tận cùng = 4 \(\Rightarrow\)5ycó tận cùng bằng 0

xét 5y2=20\(\Rightarrow\)y2=4\(\Rightarrow\)y= 2 hoặc -2

6x2= 74-20=54\(\Rightarrow\)x2= 9\(\Rightarrow\)x= 3 hoặc -3

vậy các số nguyên x, y thỏa mãn là x=(3;-3) y=(2;-2)

2 tháng 9 2015

a)x=3,y=3 --> 3x3-3-3=9-6=3

b)x=1,y=0--> 3x1x0+1-0=1

c)Chịu hihi

 nhưng đúng hộ mình nha

May ngu 

Tao lv 121 lc 100k ma moi v1

TaoTM 

XIn loi ban minh len con dong kinh

31 tháng 8 2015

a) xy-x-y=3

x(y-1)-(y-1)=4

y-1-4-2-1124
x-1-1-2-4421
y-3-10235
x0-1-3532

vậy (x,y)=(-3,0);(-1,-1);(0,-3);(2,5);(3,3);(5,2)

 

9 tháng 4 2018

 6x2
 + 5y2
 = 74 (1) 
Ta có : 5x2
 + 5y2
 =< 6x2
 + 5y2
 =< 6x2
 + 6y2
<=> 5(x2
 + y2
) =< 74 =< 6(x2
 + y2

<=> 12,3 =< x2
 + y2
 =< 14,8 
<=> 13 =< x2
 + y2
 =< 14 (vì x, y tự nhiên => x2
 + y2
 tự nhiên) 
Trường hợp 1 : x2
 + y2
 = 13 (2) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 13 (2) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 65 
Trừ 2 phương trình : x2
 = 9 <=> x = 3 (vì x >= 0) 
Thay vào (2) y2
 = 13 - x2
 = 13 - 9 = 4 <=> x = 2 
Nghiệm : (x ; y) = (2 ; 3) 
Trường hợp 2 : x2
 + y2
 = 14 (4) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 14 (3) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 70 
Trừ 2 phương trình : x2
 = 4 <=> x = 2 
Thay vào (3) : y2
 = 14 - 4 = 10 <=> y = 10 (loại) 
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)

9 tháng 4 2018

 6x2
 + 5y2
 = 74 (1) 
Ta có : 5x2
 + 5y2
 =< 6x2
 + 5y2
 =< 6x2
 + 6y2
<=> 5(x2
 + y2
) =< 74 =< 6(x2
 + y2

<=> 12,3 =< x2
 + y2
 =< 14,8 
<=> 13 =< x2
 + y2
 =< 14 (vì x, y tự nhiên => x2
 + y2
 tự nhiên) 
Trường hợp 1 : x2
 + y2
 = 13 (2) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 13 (2) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 65 
Trừ 2 phương trình : x2
 = 9 <=> x = 3 (vì x >= 0) 
Thay vào (2) y2
 = 13 - x2
 = 13 - 9 = 4 <=> x = 2 
Nghiệm : (x ; y) = (2 ; 3) 
Trường hợp 2 : x2
 + y2
 = 14 (4) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 14 (3) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 70 
Trừ 2 phương trình : x2
 = 4 <=> x = 2 
Thay vào (3) : y2
 = 14 - 4 = 10 <=> y = 10 (loại) 
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)

26 tháng 2 2018

a, (x+1)×(y+3)=5

=> x+1 và y+3 \(\in\) Ư(5) = {-1;-5;1;5}

ta có bảng sau :

x+1-1-515
y+3-5-151
x-2-604
y-8-42-2

vậy các cặp số (x;y) thỏa mãn là : (-2; -8); (-6; -4); (0; 2); (4; -2)

b, ko bt làm!

c, x2 + xy + y = 22

=> x.x + xy + y = 22

=> x(x+y) + x + y = 22 + y

=> x(x+y) + 1(x+y) = 22 + y

bí ròi