Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, có từ 1đến 100 có 100 số hạng .Chia thành 50 nhóm .Mỗi nhóm co 2 số hạng
Suy ra A= [1+(-2)]+[3+(-4)]+......+[99+(-100)]
A= (-1)+(-1)+.... +(-1)
A= (-1).50=(-50)
2,A=(1-2)+(3-4)+.....+(2015-2016)
A=(-1)+(-1)+....+(-1)
A có 2016 số hạng .Chia thành 1008 nhóm .Mỗi nhóm co 2 số hạng và có tổng =(-1)
A=(-1).1008=(-1008)
\(A=\left(1+3+...+99\right)-\left(2+4+...+100\right)\)
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)
\(A=2500-2550=-50\)
Đúng ko ta lâu rồi ko làm.
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)
Thấy số chính phương là các số có dạng 3k hoặc 3k+1
A=1015+1=1000.....000000000001
Tổng các chữ số của A là 1+0+0+...+0+1=2
2 có dạng 3k+2
=> A có dạng 3k+2 nên A ko phải số chính phương
B chia hết cho B thì chắc chia hết cho 3
C thì
2) x2 + y2 = 3z2 => x2 + y2 chia hết cho 3
Vì x2 ; y2 là số chính phương nên x2 ; y2 chia cho 3 dư 0 hoặc 1
Nếu x2 hoặc y2 hoặc x2 và y2 chia cho 3 dư 1 => x2 + y2 chia cho 3 dư 1 hoặc 2 ( trái với đề bai)
=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố => x; y đều chia hết cho 3
=> x2; y2 chia hết cho 9 => 3z2 chia hết cho 9 => z2 chia hết cho 3 ; 3 là số nguyên tố => z chia hết cho 3
Vậy...
bài 5:
Chứng minh :p+q chia hết cho 4 .Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p.q sẽ có dạng 4k+1 và 4k+3 suy ra p+q chia hết cho 4
Vi p,q là só nguyên tố >3 nêp,q chỉ có thể chia 3 dưa 1 hoặc 2 p=4k+1 suy ra q=3k+3 chia hết cho 3 loại p=3k+2 suy ra q=3k+1 nên p+q chia hết cho 3
suy ra p+q chia hêt cho 12