Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x2 + x + 1 = k2
<=> 4x2 + 4x + 4 = 4k2
<=> 4k2 - 4x2 - 4x + 1 - 5 = 0
<=> (2k)2 - (2x -1)2 = 5
<=> (2k + 2x -1)(2k - 2x - 1) = 5
Vì x, k nguyên nên ta có các trường hợp:
\(TH_1\hept{\begin{cases}2k+2x-1=5\\2k-2x-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\k=2\end{cases}}}\)
\(TH_2\hept{\begin{cases}2k+2x-1=1\\2k-2x-1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\k=2\end{cases}}}\)
\(TH_3\hept{\begin{cases}2k+2x-1=-1\\2k-2x-1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\k=-1\end{cases}}}\)
\(TH_4\hept{\begin{cases}2k+2x-1=-5\\2k-2x-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\k=-1\end{cases}}}\)
Vậy các số nguyên x là ( -1; 1 )
Giải:
Vì biểu thức đã cho là 1 số chính phương \(\Rightarrow\) Ta đặt \(x^2+2x+200=k^2\left(k\in N\right)\)
\(\Leftrightarrow k^2-\left(x^2+2x+1\right)=199\Leftrightarrow k^2-\left(x+1\right)^2=199\)
\(\Leftrightarrow\left(k-x-1\right)\left(k+x+1\right)=199\) (Áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\))
Mà \(199\) là số nguyên tố và \(x\in N\) nên: \(\hept{\begin{cases}k-x-1=1\left(1\right)\\k+x+1=199\left(2\right)\end{cases}}\)
Lấy \(\left(2\right)-\left(1\right)\Leftrightarrow x=98\)
đăt. x^2 + 2x +1 +1 = n^2 ( n dương) suy ra n^2 - (x + 1)^2 = 1 hay (n-x-1)(n+x+1) = 1.1
suy ra n - x -1 = 1 và n + x + 1 =1 suy ra n = 1; x = -1.liên hệ 0972315132