Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\sqrt{x^2+4}=y^2\left(y\in Q\right)\)
\(\Leftrightarrow y^2-x^2=4\)
\(\Leftrightarrow\left(y-x\right)\left(y+x\right)=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-x=a\\y+x=\dfrac{4}{a}\end{matrix}\right.\) \(\left(a\in Q;0< a\le\dfrac{4}{a}\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4-a^2}{2a}\\y=\dfrac{4+a^2}{2a}\end{matrix}\right.\)\(\left(a\in Q;0< a\le2\right)\)
Thế ngược lại bài toán ta có:
\(\sqrt{x^2+4}=\sqrt{\left(\dfrac{4-a^2}{2a}\right)^2+4}=\sqrt{\left(\dfrac{4+a^2}{2a}\right)^2}=\dfrac{4+a^2}{2a}\)
Vậy giá trị x cần tìm là: \(x=\dfrac{4-a^2}{2a}\)\(\left(a\in Q;0< a\le2\right)\)
Dễ thấy phương trình có nghiệm tầm thường là x = y = 0.
Tìm nghiệm khác 0. Đặt:
\(x=\frac{m}{n};y=\frac{-k}{l}\)(m, n, l, k khác 0)
\(\sqrt{\frac{3}{2}}=\frac{m.l}{n.k}\)
Vế trái là số vô tỷ. Do đó không có bất kỳ m, n, l, k nào thỏa mãn vì vế phải luôn luôn là số hữu tỷ.
Vậy phương trình có 1 nghiệm x = y = 0
\(x^3+y^3=2xy\)
Bình phương 2 vế ta được:
\(\left(x^3+y^3\right)^2=4x^2y^2\)
<=> \(x^6+y^6+2x^3y^3=4x^2y^2\)
<=> \(x^6+y^6-2x^3y^3=4x^2y^2-4x^3y^3\)
<=> \(\left(x^3-y^3\right)^2=4x^2y^2\left(1-xy\right)\)
<=> \(1-xy=\frac{\left(x^3-y^3\right)^2}{4x^2y^2}=\left(\frac{x^3-y^3}{2xy}\right)^2\)
=> \(\sqrt{1-xy}=\left|\frac{x^3-y^3}{2xy}\right|\) là 1 số hữu tỉ
=> đpcm
đặt \(x^2+x+23=k^2\left(k\in N\right)\Leftrightarrow4x^2+4x+92=4k^2\Leftrightarrow4k^2-\left(2x+1\right)^2=91\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=91\)
vì 2k+2x+1>2k-2x-1>0 nên xảy ra 2 trường hợp sau
th1 2k+2x+1=91 và 2k-2x-1=1 => x=22
th2 2k+2x+1=1 và 2k-2x-1=7 => x=1
vậy x=22; x=1 thì \(\sqrt{x^2+x+3}\)là số hữu tỉ