Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5x+9}{x+1}=\frac{5x+5+4}{x+1}\)\(ĐKXĐ:x\ne-1\)
\(=\frac{5x+5}{x+1}+\frac{4}{x+1}\)
\(=\frac{5\left(x+1\right)}{x+1}+\frac{4}{x+1}\)
\(=5+\frac{4}{x+1}\)
\(\Rightarrow A=5+\frac{4}{x+1}\)
Để \(A\in Z\Rightarrow5+\frac{4}{x+1}\in Z\)
\(\Rightarrow x+1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x=\left\{0;1;3;-2;-3;-5\right\}\)
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
\(A=\frac{3x-4}{2x-3}=\frac{2x-3+x-1}{2x-3}=1+\frac{x-1}{2x-3}\)
Để A có giá trị nguyên thì
\(x-1⋮2x-3\Leftrightarrow2x-2⋮2x-3\)
\(\Rightarrow2x-3-\left(2x-2\right)⋮2x-3\Rightarrow1⋮2x-3\)
\(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Bài 1:
a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)
Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)
b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)
Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Vậy \(a\in\left\{-9;-5;-3;1\right\}\)
Bài 2:
a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)
Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-2;4;6;12\right\}\)
b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)
Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-4;2;4;10\right\}\)
c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)
Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Vậy \(x\in\left\{-14;-4;-2;8\right\}\)
Bài 3:
Gọi \(d\inƯC\left(2m+9;14m+62\right)\)
\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)
Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản
Để C nguyên thì : 10x - 9 chia hết cho 2x - 3
<=> 10x - 15 + 6 chia hết cho 2x - 3
<=> 5(2x - 3) + 6 chia hết cho 2x - 3
=> 6 chia hết cho 2x - 3
=> 2x - 3 thuộc Ư(6) = {-6;-3;-2;-1;1;2;3;6}
Ta có bảng :
2x - 3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
2x | -3 | 0 | 1 | 2 | 4 | 5 | 6 | 9 |
x | 0 | 1 | 2 | 3 |
\(a,n\ne3\)
\(b,B\)nguyên \(\Leftrightarrow\frac{5}{n-3}\)nguyên \(\Leftrightarrow n-3\inƯ\left(5\right)\Rightarrow n-3\in\left\{-5;-1;1;5\right\}\Rightarrow n\in\left\{-2;2;4;8\right\}\)
Vậy \(n=-2;2;4;8\)
k mình nha !!!
a) Đề B là phân số
=> n - 3 > 5
=> x > 8
b) Để B có giá trị là số nguyên
=> 5 chia hết cho n - 3
=> n - 3 thuộc Ư(5) = {1 ; -1 ; 5 ; -5 }
=> Với n - 3 = -1 => n = 2
n - 3 = 1 => n = 4
n - 3 = 5 => n = 8
n - 3 = -5 => n = -2
Bài 1:
\(A=\frac{10x-9}{2x-3}=\frac{10x-15+6}{2x-3}=\frac{5.\left(2x-3\right)+6}{2x-3}=\frac{5.\left(2x-3\right)}{2x-3}+\frac{6}{2x-3}=5+\frac{6}{2x-3}\)
Để A nguyên thì \(\frac{6}{2x-3}\)nguyên
=> 6 chia hết cho 2x - 3
=> \(2x-3\inƯ\left(6\right)\)
Mà 2x - 3 là số lẻ => \(2x-3\in\left\{1;-1;3;-3\right\}\)
=> \(2x\in\left\{4;2;6;0\right\}\)
=> \(x\in\left\{2;1;3;0\right\}\)
Vậy \(x\in\left\{2;1;3;0\right\}\)thỏa mãn đề bài
Bài 2:
\(3+\frac{a}{b}=3.\frac{a}{b}\)
=> \(3.\frac{a}{b}-\frac{a}{b}=3\)
=> \(2.\frac{a}{b}=3\)
=> \(\frac{a}{b}=\frac{3}{2}\)
Vậy \(\frac{a}{b}=\frac{3}{2}\)
vừa trả lời hoc24 vừa olm hay thiệt